摘要:
The present invention generally relates to the field of genome engineering (gene editing), and more specifically to gene therapy for the treatment of Severe Combined Immunodeficiency (SCID) related to RAG1. Particularly, the present invention pertains to the treatment of RAG1 deficiency in long-term repopulating hematopoietic stem cells (HSCs). The present invention provides means and methods for genetically modifying HSCs involving gene editing reagents, such as TALE-nucleases, that specifically target a non-functional endogenous RAG1 gene, comprising at least one mutation causing Severe Combined Immunodeficiency (SCID), thereby allowing the restoration of the normal cellular phenotype. The present invention also provides engineered RAG1-edited HSCs comprising an exogenous sequence comprising a nucleic acid sequence encoding a functional RAG1 protein which is integrated in said HSCs' genome into a non-functional RAG1 endogenous locus, resulting in the expression of a functional RAG1 polypeptide. The present invention further provides populations of cells comprising said engineered HSCs, pharmaceutical compositions comprising said engineered HSCs or populations of cells, as well as their use in gene therapy for the treatment of Severe Combined Immunodeficiency (SCID) related to RAG1.
摘要:
The present disclosure provides methods for targeted insertion of an exogenous sequence at a genomic locus in a cell, wherein said insertion is induced by a sequence-specific endonuclease that has cleavage activity at said locus, at least 5 hours before the introduction into said cell of a DNA template comprising said exogenous sequence.
摘要:
The present disclosure provides in vitro and in vivo methods for selecting a candidate CAR polynucleotide to be expressed in immune cells for its preferential capability to make immune cells proliferate in an antigen-dependent manner.
摘要:
The invention pertains to therapies that require gene editing, and more specifically to non-viral methods for in vivo delivery of endonuclease reagents to specific tissues or cells. According to the invention, the endonuclease reagents are encapsulated into micelle structures of 50 to 150 nm diameter for intravenous injection. The invention thus provides therapeutic composition including such micelles structures, by which endonuclease reagents can be released into cell under RNA form for their use in the treatment of gene related diseases.
摘要:
Methods of developing genetically engineered immune cells for immunotherapy, which can be endowed with Chimeric Antigen Receptors targeting an antigen marker that is common to both the pathological cells and said immune cells (ex: CD38, CS1 or CD70) by the fact that the genes encoding said markers are inactivated in said immune cells by a rare cutting endonuclease such as TALEN, Cas9 or argonaute.
摘要:
A polypeptide encoding a chimeric antigen receptor (CAR) comprising at least one extracellular binding domain that comprises a scFv formed by at least a VH chain and a VL chain specific to an antigen, wherein said extracellular binding domain comprises at least one mAb-specific epitope.
摘要:
The present invention relates to a new generation of chimeric antigen receptors (CAR) referred to as multi-chain CARs, which are made specific to the antigen CLL1. Such CARs aim to redirect immune cell specificity and reactivity toward malignant cells expressing the tumor antigen CLL1. The alpha, beta and gamma polypeptides composing these CARs are designed to assemble in juxtamembrane position, which forms flexible architecture closer to natural receptors, that confers optimal signal transduction. The invention encompasses the polynucleotides, vectors encoding said multi-chain CAR and the isolated cells expressing them at their surface, in particularly for their use in immunotherapy. The invention opens the way to efficient adoptive immunotherapy strategies for treating cancer, especially leukemia.
摘要:
The invention relates to a method to select transformed cells. In particular, the present invention relates to the use of a nuclease engineered to inactivate selectable marker which confers cell resistance to a toxic compound. The present invention relates to methods of modifying genome of a cell, preferably an algal cell comprising the present selection step. The present invention also relates to specific engineered nucleases, polynucleotides, vectors encoding thereof, kits and isolated cells comprising said nuclease.
摘要:
The present invention is in the field of genetic editing tools and methods of genetic engineering. It relates to the engineering of rare-cutting endonucleases designed to contract highly repetitive motives in chromosomes, which are at the origin of certain genetic diseases, in particular the so-called “triplet repeat diseases”, such as the Huntington disease. The invention encompasses the method for contracting the repetitive motives, the rare-cutting endonucleases for use to contract repetitive motives in a gene subjected to repeat disorder, the polynucleotides and vectors encoding thereof as well as the resulting pharmaceutical compositions.
摘要:
The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.