Abstract:
LED packages are disclosed that are compact and efficiently emit light, and can comprise encapsulants with planar surfaces that refract and/or reflect light within the package encapsulant. The packages can comprise a submount with one or more LEDs, and a blanket conversion material layer on the LEDs and the submount. The encapsulant can be on the submount, over the LEDs, and light reflected within the encapsulant will reach the conversion material, where it is absorbed and emitted omnidirectionally. Reflected light can now escape the encapsulant, allowing for efficient emission and a broader emission profile, when compared to conventional packages with hemispheric encapsulants or lenses. In certain embodiments, the LED package provides a higher chip area to LED package area ratio. By using an encapsulant with planar surfaces, the LED package can provide unique dimensional relationships between the various features and the LED package ratios, enabling more flexibility with different applications.
Abstract:
A luminaire includes at least first and second waveguides. The first waveguide has a first coupling surface extending between a first surface and a second surface opposite the first surface, and the second waveguide has a second coupling surface extending between a third surface and a fourth surface opposite the third surface. The first and second coupling surfaces define a coupling cavity. The luminaire further includes at least one light source within the coupling cavity.
Abstract:
LED packages are disclosed that are compact and efficiently emit light, and can comprise encapsulants with planar surfaces that refract and/or reflect light within the package encapsulant. The packages can comprise a submount with one or a plurality of LEDs. In packages with a plurality of LEDs, each LED can emit the same or different wavelengths of light. A blanket conversion material layer can be included on at least some of the LEDs and the submount. The encapsulant with planar surfaces can be on the submount, over at least some of the LEDs, with the planar surfaces causing total internal reflection of light within the package. TIR light within the encapsulant can reach the conversion material, where it can be absorbed and emitted omnidirectionally. TIR light can now escape from the encapsulant and allow for efficient emission and a broader emission profile when compared to conventional packages with hemispheric encapsulants.