Abstract:
A manufacturing method for reverse conducting insulated gate bipolar transistor, the manufacturing method is characterized by the use of polysilicon for filling in grooves on the back of a reverse conducting insulated gate bipolar transistor. The parameters of reverse conducting diodes on the back of the reverse conducting insulated gate bipolar transistor can be controlled simply by controlling the doping concentration of the polysilicon accurately, indicating relatively low requirements for process control. The reverse conducting insulated gate bipolar transistor manufacturing method is relatively low in requirements for process control and relatively small in manufacturing difficulty.
Abstract:
A reverse conducting insulated gate bipolar transistor (IGBT) manufacturing method, comprising the following steps: providing a substrate having an IGBT structure formed on the front surface thereof; implanting P+ ions onto the back surface of the substrate; forming a channel on the back surface of the substrate through photolithography and etching processes; planarizing the back surface of the substrate through a laser scanning process to form P-type and N-type interval structures; and forming a back surface collector by conducting a back metalizing process on the back surface of the substrate. Laser scanning process can process only the back surface structure requiring annealing, thus solve the problem of the front surface structure of the reverse conducting IGBT restricting back surface annealing to a low temperature, improving the P-type and N-type impurity activation efficiency in the back surface structure of the reverse conducting IGBT, and enhancing the performance of the reverse conducting IGBT.
Abstract:
An insulated gate bipolar transistor (IGBT) manufacturing method comprises the following steps: providing a semiconductor substrate of a first conducting type, the semiconductor substrate having a first major surface and a second major surface (100); forming a field-stop layer of a second conducting type on the first major surface of the semiconductor substrate (200); growing an oxide layer on the field-stop layer (300); removing the oxide layer from the field-stop layer (400); forming an epitaxial layer on the field-stop layer from which the oxide layer has been removed; and then manufacturing an IGBT on the epitaxial layer (600). Before regular manufacturing of an IGBT, the surface defects of a substrate material are eliminated as many as possible before epitaxy is formed, and the quality of an epitaxial layer is improved, thereby improving the quality of the whole IGBT.
Abstract:
Disclosed is a method for removing a polysilicon protection layer (12) on a back face of an IGBT having a field stop structure (10). The method comprises thermally oxidizing the polysilicon protection layer (12) on the back face of the IGBT until the oxidation is terminated on a gate oxide layer (11) located above the polysilicon protection layer (12) to form a silicon dioxide layer (13), and removing the formed silicon dioxide layer (13) and the gate oxide layer (11) by a dry etching process. The method for removing the protection layer is easier to control.
Abstract:
A field-stop reverse conducting insulated gate bipolar transistor and a manufacturing method thereof. The transistor comprises a terminal structure (200) and an active region (100). An underlayment of the field-stop reverse conducting insulated gate bipolar transistor is an N-type underlayment, the back surface of the underlayment is provided with an N-type electric field stop layer (1), one surface of the electric field stop layer (1) departing from the underlayment is provided with a back-surface P-type structure (10), and the surface of the back-surface P-type structure (10) is provided with a back-surface metal layer (12). A plurality of polysilicon filling structures (11) which penetrate into the electric field stop layer (1) from the back-surface P-type structure (10) are formed in the active region (100).
Abstract:
Disclosed is a method for removing a polysilicon protection layer (12) on a back face of an IGBT having a field stop structure (10). The method comprises thermally oxidizing the polysilicon protection layer (12) on the back face of the IGBT until the oxidation is terminated on a gate oxide layer (11) located above the polysilicon protection layer (12) to form a silicon dioxide layer (13), and removing the formed silicon dioxide layer (13) and the gate oxide layer (11) by a dry etching process. The method for removing the protection layer is easier to control.
Abstract:
A field-stop reverse conducting insulated gate bipolar transistor and a manufacturing method therefor. The transistor comprises a terminal structure (200) and an active region (100). An underlayment of the field-stop reverse conducting insulated gate bipolar transistor is an N-type underlayment, the back surface of the underlayment is provided with an N-type electric field stop layer (1), one surface of the electric field stop layer departing from the underlayment is provided with a back-surface P-type structure (10), and the surface of the back-surface P-type structure is provided with a back-surface metal layer (12). A plurality of notches (11) which penetrate through the back-surface P-type structure (10) from the back-surface metal layer (12) to the electric field stop layer (1) are formed in the active region (100), and metals of the back-surface metal layer (12) are filled into the notches (11) to form a metal structure which extends into the electric field stop layer (1).
Abstract:
An insulated gate bipolar translator (IGBT) with a built-in diode and a manufacturing method thereof are provided. The IGBT comprises: a semiconductor substrate (1) of the first conduction type which has a first major surface (1S1) and a second major surface (1S2), wherein the semiconductor substrate (1) comprises an active region (100) and a terminal protection area (200) which is located at the outer side of the active region; an insulated gate transistor unit which is formed at the side of the first major surface (1S1) of the active region (100), wherein a channel of the first conduction type is formed thereon during the conduction thereof; and first semiconductor layers (10) of the first conduction type and second semiconductor layers (11) of the second conduction type of the active region, which are formed at the side of the second major surface (1S2) of the semiconductor substrate (1) alternately, wherein the IGBT only comprises the second semiconductor layers (11) in the terminal protection area (200) which is located at the side of the second major surface (1S2) of the semiconductor substrate (1).