Abstract:
Systems and apparatuses include a controller structured to: receive information indicative of an operating condition of a vehicle subsystem, receive information indicative of an external static condition, and receive information indicative of an external dynamic condition. The system is further configured to predict a fuel cut event based on at least one of the operating condition of the vehicle subsystem, the external static condition, and the external dynamic condition. Responsive to predicting a fuel cut event, the controller is structured to modulate at least one of a torque or a speed of the engine based on the operating condition of the vehicle subsystem and at least one of the information indicative of the external static condition and the external dynamic condition.
Abstract:
An apparatus includes a sensor module, an offset diagnostic module, and a notification module. The sensor module is in operative communication with a cylinder pressure sensor and structured to acquire cylinder pressure data from the cylinder pressure sensor indicative of an actual in-cylinder pressure of a cylinder of an engine. The offset diagnostic module is structured to interpret the cylinder pressure data to determine an offset of the cylinder pressure sensor based on a reference in-cylinder pressure and the actual in-cylinder pressure. The notification module is structured to provide an offset error notification responsive to the offset being greater than a threshold offset.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
System, apparatus, and methods are disclosed for a computing a first set of parameters based on operational states of an internal combustion engine and an air handling system, a second set of parameters based on a linear time varying model, and one or more control commands based upon a minimization or maximization of a cost function over a prediction horizon, the second set of parameters, and at least one physical constraint of the internal combustion engine, and controlling one or more operations based at least in part upon the one or more control commands. The acts of determining the first and second set of parameters and computing the one or more control commands are repeated over a plurality of time periods over which the first set of parameters and the second set of parameters are time variant.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
A method includes receiving, by a remote server, operating parameters regarding one or more components of a vehicle from a vehicle controller of the vehicle; retrieving, by the remote server, at least one of static information or dynamic information regarding one or more parameters ahead of the vehicle; determining, by the remote server, an adjustment for at least one of the one or more components of the vehicle based on (i) the operating parameters and (ii) the at least one of the static information or the dynamic information; and providing, by the remote server, an instruction to the vehicle controller regarding the adjustment.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.
Abstract:
A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.
Abstract:
One exemplary embodiment is a method of operating a system comprising an internal combustion engine system, and an exhaust aftertreatment system comprising an SCR catalyst, and an electronic control system. The method comprises operating the electronic control system to perform the acts of determining a predicted temperature value indicative of a predicted future temperature of the SCR catalyst, determining a temperature profile value using the predicted temperature value and a current temperature value indicative of a current temperature of the SCR catalyst, operating a controller to provide an output indicating a difference between the temperature profile value and a temperature target, determining a heat request using the output of the controller, filtering the heat request using a prediction horizon, and controlling operation of the engine system using the filtered heat request to increase a temperature of the SCR catalyst.