Abstract:
Signal processing methods and apparatus are disclosed, including a method of receiving a signal using at least first and second antennas, the method comprising obtaining a first signal comprising a component of the received signal received at said first antenna, obtaining a second signal comprising a component of the received signal received at said second antenna, wherein the first and second signals comprise at least partially orthogonal components of the received signal, performing operations on said first signal and said second signal to obtain first and second modified signals, wherein the operations substantially maximise a level of the received signal in the first modified signal and substantially minimise a level of the received signal in the second modified signal, and processing the first modified signal.
Abstract:
A wireless charger is disclosed that comprises a transmitter and a resonator connected to the transmitter and comprising a conductive path substantially located within a plane, wherein the conductive path is arranged to form at least two loops, said loops being arranged such that a current that flows in the conductive path flows around a first one of said loops in a first direction and around a second one of said loops in a second direction opposite the first direction.
Abstract:
The present application relates to apparatus for wirelessly charging a rechargeable battery, the apparatus comprising: a charging resonator assembly for converting energy from a magnetic field external to the apparatus into an electric current; and a charging circuit for charging the battery using the electric current, wherein the charging resonator assembly includes a plurality of microelectromechanical system (MEMS) switches which, when open, divide the charging resonator into a plurality of electrically unconnected resonator portions, and which, when closed, connect the plurality of resonator portions to form a continuous resonator.
Abstract:
An inductor arrangement comprises a first inductor formed on a substrate, a second inductor formed on the substrate, a first loop formed on the substrate adjacent to the first inductor and a phasing network connected to the first loop which is arranged to receive an input signal representative of a flow of magnetic flux through the second inductor and to apply a first current to the first loop for generating a flow of magnetic flux for reducing magnetic coupling between the second inductor and the first inductor. A second loop can be formed on the substrate adjacent to the second inductor which is arranged to generate a second current in response to a flow of magnetic flux through the second loop, with the second current being the signal representative of a flow of magnetic flux through the second inductor.
Abstract:
Signal processing methods and apparatus are disclosed, including a method of receiving a signal using at least first and second antennas, the method comprising obtaining a first signal comprising a component of the received signal received at said first antenna, obtaining a second signal comprising a component of the received signal received at said second antenna, wherein the first and second signals comprise at least partially orthogonal components of the received signal, performing operations on said first signal and said second signal to obtain first and second modified signals, wherein the operations substantially maximize a level of the received signal in the first modified signal and substantially minimize a level of the received signal in the second modified signal, and processing the first modified signal.
Abstract:
A reconstituted electronic device comprising at least one die and at least one passive component. A functional material is incorporated in the substrate of the device to modify the electrical behavior of the passive component. The passive component may be formed in redistribution layers of the device. Composite functional materials may be used in the substrate to forms part of or all of the passive component. A metal carrier may form part of the substrate and part of the at least one passive component.
Abstract:
A reconstituted electronic device comprising at least one die and at least one passive component. A functional material is incorporated in the substrate of the device to modify the electrical behaviour of the passive component. The passive component may be formed in redistribution layers of the device. Composite functional materials may be used in the substrate to forms part of or all of the passive component. A metal carrier may form part of the substrate and part of the at least one passive component.