Abstract:
Power system optimization is disclosed. An example power system described herein may include an engine control module that receives measurements associated with sensors, identifies settings associated with control devices, determines that a first set of parameters associated with the one or more control devices is to be optimized according to a first optimization process, iteratively performs the first optimization process until the first set of parameters are optimized, determines that a second set of parameters associated with the one or more control devices are to be optimized according to a second optimization process, iteratively performs the second optimization process until the second set of parameters are optimized, and, after the second set of parameters are optimized according to the second optimization process, configures one of the control devices to operate using an optimized value for the control device determined using the second optimization process.
Abstract:
A fuel injector controller is disclosed. The fuel injector controller may determine respective values of a set of parameters of the engine; process, using a neural network, the respective values to determine a target fuel output of a fuel injector, wherein the neural network is configured to determine the target fuel output based on the set of parameters being an input layer of the neural network; determine, based on an output of the neural network, the target fuel output; and provide the determined target fuel output to the fuel injector to permit the fuel injector to inject fuel according to the target fuel output.
Abstract:
An engine misfire mitigation system is disclosed. The engine misfire mitigation system may include a sensor system; a fuel system to provide fuel to the engine; and an engine control module to: estimate an air pressure of a combustion chamber of the engine based on measurements from the sensor system, determine a probability that a threshold amount of hydrocarbons are present in an exhaust system of the engine based on the air pressure of the combustion chamber, determine that a fuel injection pressure is to be adjusted based on the probability that the threshold amount of hydrocarbons are present in the exhaust system of the engine and the air pressure of the combustion chamber, and cause the fuel system to reduce the fuel injection pressure.
Abstract:
An internal combustion engine system includes a control system with a monitoring mechanism producing data of engine operating state within a BMEP/speed envelope, and an electronic control unit structured to output a control command to vary at least one of a fuel delivery property or an air delivery property in the engine based on the data. Outputting the control command switches the engine between or among combustion modes that each satisfy different calibration criteria for optimizing aftertreatment function.
Abstract:
An internal combustion engine system includes a control system with a monitoring mechanism producing data of engine operating state within a BMEP/speed envelope, and an electronic control unit structured to output a control command to vary at least one of a fuel delivery property or an air delivery property in the engine based on the data. Outputting the control command switches the engine between or among combustion modes that each satisfy different calibration criteria for optimizing aftertreatment function.
Abstract:
In one aspect, an exhaust treatment system includes a first particulate filter that has an oxidation catalyst and receives an exhaust stream from an engine. The first particulate filter has a first filter body that defines a plurality of flow-through channels, each open on the inlet and outlet sides of the first filter body. The first filter body also defines a plurality of wall-flow channels, each open on one of the inlet and outlet sides and closed on the other of the inlet and outlet sides. The system also has a second particulate filter that receives the exhaust stream from the first particulate filter. The second particulate filter has a second filter body that defines a plurality of wall-flow channels, each open on one of the inlet and outlet sides of the second particulate filter and closed on the other of the inlet and outlet sides of the second particulate filter.
Abstract:
A damage analysis and control system is disclosed. An example process may include receiving a data set of measurements associated with a period of operation of a power system. The data set of measurements may identify a frequency that the power system is in an operating state during the period of operation, and the data set of measurements may identify a frequency of damage measurements associated with the operating state. The process may include determining, using a damage model and the data set of measurements, a damage score for the operating state during the period of operation of the power system. The process may include determining that the damage score satisfies a threshold damage score associated with the damage model and performing an action associated with the power system based on the damage score satisfying the threshold damage score.
Abstract:
There is disclosed a method of regenerating at least one aftertreatment device in an exhaust system of an internal combustion engine by changing a calibration of the exhaust gas recirculation system with the engine to increase temperature of exhaust gas provided to the at least one aftertreatment device, and further incrementally changing the calibration to obtain an exhaust gas temperature within a target regeneration temperature range.
Abstract:
In one aspect, an exhaust treatment system includes a first particulate filter that has an oxidation catalyst and receives an exhaust stream from an engine. The first particulate filter has a first filter body that defines a plurality of flow-through channels, each open on the inlet and outlet sides of the first filter body. The first filter body also defines a plurality of wall-flow channels, each open on one of the inlet and outlet sides and closed on the other of the inlet and outlet sides. The system also has a second particulate filter that receives the exhaust stream from the first particulate filter. The second particulate filter has a second filter body that defines a plurality of wall-flow channels, each open on one of the inlet and outlet sides of the second particulate filter and closed on the other of the inlet and outlet sides of the second particulate filter.
Abstract:
A fuel content detection system is disclosed. The fuel content detection system may include an engine control module (ECM) to receive a measurement of a parameter. The parameter may correlate with an amount of a substance in a fuel that is being consumed in an engine. The ECM may determine an estimation of the parameter based on a model. The model may use a predetermined value associated with the amount of the substance, and the engine may be configured to consume a designated type of fuel that includes an amount of the substance that corresponds to the predetermined value. The ECM may determine, based on the estimation and the measurement not being within a threshold range, that the fuel is not the designated type of fuel and perform an action associated with the engine.