摘要:
One aspect of the present invention relates to a system and method for mitigating surface abnormalities on a semiconductor structure. The method involves exposing the layer to a first plasma treatment in order to mitigate surface interactions between the layer and a subsequently formed photoresist without substantially etching the layer, the first plasma comprising oxygen and nitrogen; forming a patterned photoresist over the treated layer, the patterned photoresist being formed using 193 nm or lower radiation; and etching the treated layer through openings of the patterned photoresist. The system and method also includes a monitor processor for determining whether the plasma treatment has been administered and for adjusting the plasma treatment components. The monitor processor transmits a pulse, receives a reflected pulse response and analyzes the response. An optional second plasma treatment comprising nitrogen and hydrogen may be administered after the first plasma treatment but before forming the photoresist.
摘要:
Disclosed are a system and method for monitoring a patterned photoresist clad-wafer structure undergoing an etch process. The system includes a semiconductor wafer structure comprising a substrate, one or more intermediate layers overlying the substrate, and a first patterned photoresist layer overlying the intermediate layers, the semiconductor wafer structure being etched through one or more openings in the photoresist layer; a wafer-etch photoresist monitoring system programmed to obtain data relating to the photoresist layer as the etch process progresses; a pattern-specific grating aligned with the wafer structure and employed in conjunction with the monitoring system, the grating having at least one of a pitch and a critical dimension identical to the first patterned photoresist layer; and a wafer processing controller operatively connected to the monitoring system and adapted to receive data from the monitoring system in order to determine adjustments to a subsequent wafer clean process.
摘要:
A collision avoidance system for a machine is disclosed. The collision avoidance system has a first obstacle detection system. The first obstacle detection system is configured to detect a first obstacle and generate a corresponding first signal. Additionally, the collision avoidance system has an operator interface. The operator interface has a display configured to communicate visual information to an operator. The operator interface also has an input device configured to receive selections from the operator and generate a corresponding second signal. In addition, the collision avoidance system has a controller. The controller is in communication with the first obstacle detection system and the operator interface. The controller is configured to control the display to provide a first dangerous obstacle warning to the operator, based on the first signal. The controller is also configured to control the display to provide a second dangerous obstacle warning to the operator, based on the first and second signals.
摘要:
A guidance system for a mobile machine is disclosed. The guidance system may have a scanning device configured to generate a signal indicative of a lateral distance from the machine to a roadway marker, a locating device configured to determine a geographical location of the machine, and a controller in communication with the scanning device and the locating device. The controller may be configured to receive a desired lateral distance from the machine to the roadway marker, and to compare the desired lateral distance to the actual lateral distance. The controller may further be configured to implement a response to the comparison based on the geographical location.
摘要:
The invention provides systems and processes that form the inverse (photographic negative) of a patterned first coating. The patterned first coating is usually provided by a resist. After the first coating is patterned, a coating of a second material is provided thereover. The uppermost layer of the second coating is removed, where appropriate, to expose the patterned first coating. The patterned first coating is subsequently removed, leaving the second coating material in the form of a pattern that is the inverse pattern of the first coating pattern. The process may be repeated with a third coating material to reproduce the pattern of the first coating in a different material. Prior to applying the second coating, the patterned first coating may be trimmed by etching, thereby reducing the feature size and producing sublithographic features. In addition to providing sublithographic features, the invention gives a simple, efficient, and high fidelity method of obtaining inverse coating patterns.
摘要:
Disclosed are methods for eliminating and/or mitigating the formation of footing and/or T-tops in a resist pattern. A substrate with or without an antireflective coating layer may be treated with an acidic composition prior to the formation of a resist layer. The acid treatment prevents the loss of photo generated acid from the resist by either quenching and/or neutralizing the bases, and thereby reduces the formation of footing. The surface of a resist layer which has been irradiated may be treated with an acidic composition prior to post-exposure bake. The acid treatment prevents the loss of photo generated acid from the resist by either compensating for the evaporation and/or neutralization of the bases and thereby prevents the formation of T-tops.
摘要:
The present invention provides a system and methodology for dummy-dispensing resist though a dispense head while mitigating waste associated with the dummy-dispense process. The dummy dispensed resist is returned to a reservoir from which it was taken. Between substrate applications, the dispense head can be positioned to dispense resist into a return line. The flow of resist from the dispense head keeps resist from drying at the dispense head. By funneling the dummy-dispensed resist into a return line with low volume, for example, waste from the dummy-dispensing process can be mitigated.
摘要:
A system and method for detecting bubbles in a lithographic immersion medium and for controlling a lithographic process based at least in part on the detection of bubbles is provided. A bubble monitoring component emits an incident beam that passes through the immersion medium and is incident upon a substrate to produce a reflected and/or diffracted beam(s). The reflected and/or diffracted beam(s) is received by one or more optical detectors. The presence or absence of bubbles can be derived from information extracted by scatterometry from the reflected and/or diffracted beams. A process control component interacts with a positioning component and an optical exposure component to alter a lithographic process based at least in part on the results of the scatterometry.
摘要:
The present invention relates to monitoring and controlling a reticle fabrication process (e.g. employed with an electron beam lithography process). A typical fabrication process involves discrete stages including exposure, post-exposure bake and development. After fabrication is complete, an inspection can be performed on the reticle to determine whether any parameters during fabrication and/or any data points are outside of acceptable tolerances. The data is collected and fed into an algorithm (e.g. data-mining algorithm) utilized to determine which fabrication parameters need to be modified then sends the data to a control system (e.g. advanced process control) to facilitate needed changes to the fabrication parameters.
摘要:
A computing environment can dynamically respond to user preferences and personal abilities by enabling computer users to configure their computing experience by implicitly gathering information about the users' needs. The system can detect users' issues during the natural course of interaction with the system and offer to make adjustments to make their tasks simpler and more enjoyable. The system can allow for the configuration of settings that can impact users' abilities to receive important information from the system or provide input to the system.