摘要:
A lens having a first surface (1) and a second surface (2). The first surface (1) and the second surface (2) are mirror symmetric to a first symmetric plane (A) passing through an optical axis (Y) of the lens and extend in a first direction (X) perpendicular to the optical axis (Y). The curve profiles of the first surface (1) and the second surface (2) on the cross sections perpendicular to the first direction (X) are configured in such a way that light emitting from a light source (3) arranged at a predetermined position of a second surface side is refracted by the first surface (1) and the second surface (2) to be emitted in a direction which is offset from the optical axis (Y) by more than a predetermined angle.
摘要:
A lens having a first surface (1) and a second surface (2). The first surface (1) and the second surface (2) are mirror symmetric to a first symmetric plane (A) passing through an optical axis (Y) of the lens and extend in a first direction (X) perpendicular to the optical axis (Y). The curve profiles of the first surface (1) and the second surface (2) on the cross sections perpendicular to the first direction (X) are configured in such a way that light emitting from a light source (3) arranged at a predetermined position of a second surface side is refracted by the first surface (1) and the second surface (2) to be emitted in a direction which is offset from the optical axis (Y) by more than a predetermined angle.
摘要:
The present invention relates to a A lens configured to a lighting device, comprising an optical part (1) and a mechanical part (2) surrounding the optical part (1), wherein, the mechanical part (2) comprises a blocking protrusion (3) protruding in a direction parallel to the optical axis (4) of the lens, surrounding the optical part (1) and spaced apart from the optical part (1). This type of lens can effectively prevent the optical part from being damaged, for example, in a low pressure molding process, by a hot liquid glue, improve the yield of the lighting device, and have fine waterproof ability at the same time. Also disclosed is a lighting device having this type of lens, and the lighting device has beautiful appearance and fine waterproof effect. A method configured to make this lighting device is also disclosed.
摘要:
A lens configured to a lighting device, comprising an optical part (1) and a mechanical part (2) surrounding the optical part (1), wherein, the mechanical part (2) comprises a blocking protrusion (3) protruding in a direction parallel to the optical axis (4) of the lens, surrounding the optical part (1) and spaced apart from the optical part (1). This type of lens can effectively prevent the optical part from being damaged, for example, in a low pressure molding process, by a hot liquid glue, improve the yield of the lighting device, and have fine waterproof ability at the same time. Also disclosed is a lighting device having this type of lens, and the lighting device has beautiful appearance and fine waterproof effect. A method configured to make this lighting device is also disclosed.
摘要:
A housing of an electronic module may include: a mounting surface located at one side of the housing, wherein the mounting surface includes at least three sub-mounting surfaces, lines connecting the centers of respective sub-mounting surfaces form a polygon, and a mounting hole extending from one side of the housing to the other side thereof and being opened within an area of the polygon.
摘要:
A light emitting module may include: a PCB board; a light emitting assembly mounted on the PCB board; a lens and an encapsulating housing, the encapsulating housing encapsulating therein the PCB board, the light emitting assembly and part of the lens, and an exit surface of the lens being exposed out of the encapsulating housing, wherein the encapsulating housing is formed therein with a first concave region surrounding the exit surface and reducing light blocking, and at least a second concave region into the first concave region, wherein the second concave region is designed in such a way that water in the first concave region is drained via the second concave region.