摘要:
A method and apparatus for depositing a low dielectric constant film by plasma assisted copolymerization of p-xylylene and a comonomer having carbon-carbon double bonds at a constant RF power level from about 0W to about 100W or a pulsed RF power level from about 20W to about 160W. The copolymer film has a dielectric constant from about 2.2 to about 2.5. Preferred comonomers include tetravinyltetramethylcyclotetrasiloxane, tetraallyloxysilane, and trivinylmethylsilane. The copolymer films include at least 1% by weight of the comonomer.
摘要:
A method for forming thin polymer layers having low dielectric constants or semiconductor substrates. In one embodiment, the method includes the vaporization of stable di-p-xylylene, the pyrolytic conversion of such gaseous dimer material into reactive monomers, and blending of the resulting gaseous p-xylylene monomers with one or more comonomers having silicon-oxygen bonds and at least two pendent carbon--carbon double bonds. The copolymer films have low dielectric constants, improved thermal stability, and excellent adhesion to silicon oxide layers in comparison to parylene-N homopolymers.
摘要:
A silicon oxide layer is produced by plasma enhanced decomposition of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
摘要:
A silicon oxide layer is produced by plasma enhanced oxidation of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. Films having low moisture content and resistance to cracking are deposited by introducing oxygen into the processing chamber at a flow rate of less than or equal to the flow rate of the organosilicon compounds, and generating a plasma at a power density ranging between 0.9 W/cm2 and about 3.2 W/cm2. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. The organosilicon compound preferably has 2 or 3 carbon atoms bonded to each silicon atom, such as trimethylsilane, (CH3)3SiH. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
摘要翻译:氧化硅层通过有机硅化合物的等离子体增强氧化制备,以沉积碳原子量至少为1%的膜。 通过以小于或等于有机硅化合物的流速的流量将氧引入处理室,并且以0.9W / cm 2的功率密度产生等离子体来沉积具有低水分含量和耐开裂性的膜 和约3.2W / cm 2。 可以引入任选的载气,以便以小于或等于有机硅化合物的流速的流速促进沉积过程。 有机硅化合物优选与每个硅原子键合2或3个碳原子,例如三甲基硅烷,(CH 3)3 SiH。 可以通过暂时增加有机硅化合物的氧化而在氧化硅层附近形成富氧表面。
摘要:
A silicon oxide layer is produced by plasma enhanced decomposition of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.