Abstract:
A submount is used for disposing an illuminant element or a light-receiving element having an optical axis. The submount is disposed at a plane and has a main body. The main body includes a first surface and a second surface. The first surface is approximately parallel to the plane and far away from the plane. The second surface is approximately parallel to the plane and adjacent to the plane. A disposing part of the first surface is tilted with respect to the second surface at a predetermined angle. The illuminant element or the light-receiving element is disposed on the disposing part. The optical axis of the illuminant element or the light-receiving element is tiled with respect to a normal of the second surface at the predetermined angle.
Abstract:
A submount is used for disposing an illuminant element or a light-receiving element having an optical axis. The submount is disposed at a plane and has a main body. The main body includes a first surface and a second surface. The first surface is approximately parallel to the plane and far away from the plane. The second surface is approximately parallel to the plane and adjacent to the plane. A disposing part of the first surface is tilted with respect to the second surface at a predetermined angle. The illuminant element or the light-receiving element is disposed on the disposing part. The optical axis of the illuminant element or the light-receiving element is tiled with respect to a normal of the second surface at the predetermined angle.
Abstract:
A light source unit is disclosed for arranging on a plane and emitting a light beam oblique to the plane. The light source unit includes an illuminant element and a transparent encapsulator. The illuminant element has an upper surface and a lower surface both parallel to the plane. The transparent encapsulator physically contacts with the illuminant element and at least covers the upper surface of the illuminant element. The transparent encapsulator has an oblique surface above the upper surface and oblique to the upper surface. In addition, an optical inputting module having the light source unit mentioned above is disclosed.
Abstract:
A light source unit is disclosed for arranging on a plane and emitting a light beam oblique to the plane. The light source unit includes an illuminant element and a transparent encapsulator. The illuminant element has an upper surface and a lower surface both parallel to the plane. The transparent encapsulator physically contacts with the illuminant element and at least covers the upper surface of the illuminant element. The transparent encapsulator has an oblique surface above the upper surface and oblique to the upper surface. In addition, an optical inputting module having the light source unit mentioned above is disclosed.
Abstract:
A triple wavelength bidirectional optical communication system includes an optical fiber, a transmitter optical subassembly and a receiver optical subassembly. The transmitter optical subassembly includes a first filter, a dual wavelength laser device and a first detector device. The dual wavelength laser device emits a first and a second laser beam to the optical fiber. The first detector device receives a third laser beam emitted from the optical fiber and propagated via the first filter. The receiver optical subassembly includes a second filter, a transceiver device and a second detector device. The transceiver device emits the third laser beam propagated via the second filter and reached to the optical fiber and also receives the first laser beam emitted from the optical fiber and propagated via the second filter. The second detector device receives the second laser beam emitted from the second facet and propagated via the second filter.
Abstract:
A method for producing an oxide confined semiconductor laser uses a dual platform to synchronously produce a light emitting active area and a wire bonding area on a semiconductor material and use a metal protective material, an electrically conductive metal material, and a dielectric material together with an etching process, an oxide confined technology, and plating technology to produce the dual platform, an oxide layer, a dielectric layer, a protective layer, and a metal layer. The light emitting active area platform and the wire bonding area platform are independent, and the wire bonding area platform is produced on the semiconductor structure, such that an ion implant process can adjust the capacitance and provide a higher wire bonding strength. Since the electric layer is filled on the external sides of the dual platforms, the wire connected metal capacitance is lowered, and the planarization facilitates the production of the metal layer.
Abstract:
The present invention discloses a manufacturing method of vertical cavity surface emitting laser. The method includes following steps: providing a substrate; forming an epitaxial layer stack including an aluminum-rich layer; forming an ion-doping mask including a ring-shaped opening; doping ions in the epitaxial layer stack through the ring-shaped opening and forming a ring-shaped ion-doped region over the aluminum-rich layer; forming an etching mask on the ion-doping mask for covering the ring-shaped opening of the ion-doping mask; etching the epitaxial layer stack through the etching mask and ion-doping mask for forming an island platform; oxidizing the aluminum-rich layer for forming a ring-shaped oxidized region. In addition, the present invention also discloses a vertical cavity surface emitting laser manufactured by the above mentioned method.
Abstract:
A dual wavelength laser device including a cap, a header, a first laser chip and a second laser chip. The cap includes a cap body and a lens embedded on the cap body. The header forms an accommodating space with the cap. The first laser chip is arranged in the accommodating space and emitting a first laser beam toward the lens. The second laser chip is arranged in the accommodating space and emitting a second laser beam toward the lens.
Abstract:
A bi-directional optical device includes: a TO cap; a TO header defining a receiving space together with the TO cap; a laser chip provided on the TO header and in the receiving space; and a light-receiving chip provided on the TO header and in the receiving space. The TO cap has a cap body and a lens embeddedly mounted on the cap body. The laser chip emits a first laser beam toward the lens. The light-receiving chip faces the lens and receives a second laser beam transmitted through the lens. The laser chip and the light-receiving chip are packaged together within the receiving space defined by the TO cap and the TO header, so as to effectuate a bi-directional optical device for emitting and receiving light of different wavelengths.
Abstract:
A method for producing an oxide confined semiconductor laser uses a dual platform to synchronously produce a light emitting active area and a wire bonding area on a semiconductor material and use a metal protective material, an electrically conductive metal material, and a dielectric material together with an etching process, an oxide confined technology, and plating technology to produce the dual platform, an oxide layer, a dielectric layer, a protective layer, and a metal layer. The light emitting active area platform and the wire bonding area platform are independent, and the wire bonding area platform is produced on the semiconductor structure, such that an ion implant process can adjust the capacitance and provide a higher wire bonding strength. Since the electric layer is filled on the external sides of the dual platforms, the wire connected metal capacitance is lowered, and the planarization facilitates the production of the metal layer.