摘要:
The present disclosure provides for many different embodiments. An exemplary method can include providing a mask fabricated according to a design pattern; extracting a mask pattern from the mask; converting the mask pattern into a rendered mask pattern, wherein the simulated design pattern includes the design pattern and any defects in the mask; simulating a lithography process using the rendered mask pattern to create a virtual wafer pattern; and determining whether any defects in the mask are critical based on the virtual wafer pattern. The critical defects in the mask can be repaired.
摘要:
The present disclosure provides for many different embodiments. An exemplary method can include providing a blank mask and a design layout to be patterned on the blank mask, the design layout including a critical area; inspecting the blank mask for defects and generating a defect distribution map associated with the blank mask; mapping the defect distribution map to the design layout; performing a mask making process; and performing a mask defect repair process based on the mapping.
摘要:
The present disclosure provides for many different embodiments. An exemplary method can include providing a blank mask and a design layout to be patterned on the blank mask, the design layout including a critical area; inspecting the blank mask for defects and generating a defect distribution map associated with the blank mask; mapping the defect distribution map to the design layout; performing a mask making process; and performing a mask defect repair process based on the mapping.
摘要:
The present disclosure provides for many different embodiments. An exemplary method can include providing a mask fabricated according to a design pattern; extracting a mask pattern from the mask; converting the mask pattern into a rendered mask pattern, wherein the simulated design pattern includes the design pattern and any defects in the mask; simulating a lithography process using the rendered mask pattern to create a virtual wafer pattern; and determining whether any defects in the mask are critical based on the virtual wafer pattern. The critical defects in the mask can be repaired.
摘要:
The present disclosure provides a method of inspecting a photolithographic mask wherein a design database is received, and a feature of the design database is adjusted by a bias factor to produce a biased database. Image rendering is performed on the biased database to produce a biased image. A mask is also created using the design database, and the mask is imaged to produce a mask image. The biased image is compared to the mask image, and a new value for the bias factor may be determined based on the comparison.
摘要:
The present disclosure provides a method of inspecting a photolithographic mask wherein a design database is received, and a feature of the design database is adjusted by a bias factor to produce a biased database. Image rendering is performed on the biased database to produce a biased image. A mask is also created using the design database, and the mask is imaged to produce a mask image. The biased image is compared to the mask image, and a new value for the bias factor may be determined based on the comparison.
摘要:
A photovoltaic cell manufacturing method is disclosed. Methods include manufacturing a photovoltaic cell having a selective emitter and buried contact (electrode) structure utilizing nanoimprint technology. The methods include providing a semiconductor substrate having a first surface and a second surface opposite the first surface; forming a first doped region in the semiconductor substrate adjacent to the first surface; performing a nanoimprint process and an etching process to form a trench in the semiconductor substrate, the trench extending into the semiconductor substrate from the first surface; forming a second doped region in the semiconductor substrate within the trench, the second doped region having a greater doping concentration than the first doped region; and filling the trench with a conductive material. The nanoimprint process uses a mold to define a location of an electrode line layout.
摘要:
Structure of mask blanks and masks, and methods of making masks are disclosed. The new mask blank and mask comprise a tripe etching stop layer to prevent damages to the quartz substrate when the process goes through etching steps three times. The triple etching stop layer may comprise a first sub-layer of tantalum containing nitrogen (TaN), a second sub-layer of tantalum containing oxygen (TaO), and a third sub-layer of TaN. Alternatively, the triple etching stop layer may comprise a first sub-layer of SiON material, a second sub-layer of TaO material, and a third sub-layer of SiON material. Another alternative may be one layer of low etching rate MoxSiyONz material which can prevent damages to the quartz substrate when the process goes through etching steps three times. The island mask is defined on the mask blank by using various optical proximity correction rules.
摘要:
A method of forming a standard mask for an inspection system is provided, the method comprising providing a substrate within a chamber, and providing a tetraethylorthosilicate (TEOS) precursor within the chamber. The method further includes reacting the TEOS precursor with an electron beam to form silicon oxide particles of controlled size at one or more controlled locations on the substrate, the silicon oxide particles disposed as simulated contamination defects.
摘要:
Provided is a photomask that includes a substrate having a first region and a second region, a first pattern disposed in the first region of the substrate, and a second pattern disposed in the second region of the substrate. The first and second patterns are a decomposition of a design pattern to be transferred onto a wafer in a lithography process.