HOIST MAIN SHAFT TORQUE MONITORING DEVICE BASED ON ANGLE MEASUREMENT
    1.
    发明申请
    HOIST MAIN SHAFT TORQUE MONITORING DEVICE BASED ON ANGLE MEASUREMENT 有权
    基于角度测量的主轴主轴扭矩监测装置

    公开(公告)号:US20160187211A1

    公开(公告)日:2016-06-30

    申请号:US14909856

    申请日:2014-05-29

    IPC分类号: G01L3/08

    CPC分类号: G01L3/08 G01L3/12

    摘要: A hoist main shaft torque monitoring device based on angle measurement, constituted primarily by a first base, a second base, a light generating unit, a shutter, and a light sensing element; the light source, a first lens, and a first optical aperture arranged in the light generating unit, as well as a second optical aperture, second lens, and light sensing element on the shutter, forming a light source generation, propagation, and reception pathway; when the elevator main shaft is subjected to a certain torque, a corresponding displacement is produced between the first optical aperture and the second optical aperture, thus measuring the change in amount of light ultimately reaching the second optical aperture so as to measure the twist angle of the rotary shaft and finally calculate the magnitude of the shaft torque. Without damaging the original equipment and foundation, the device measures the torque of the shaft at different rotational speeds. The device can measure stationary torque and torque at different rotational speeds of the shaft, without the electromagnetic field interfering with wireless transmission; the device is easy to use, maintenance costs are low, and it is of interest for widespread popularization.

    摘要翻译: 一种基于角度测量的起重机主轴转矩监测装置,主要由第一基座,第二基座,发光单元,快门和光感测元件构成; 光源,第一透镜和布置在光产生单元中的第一光学孔,以及快门上的第二光学孔,第二透镜和光感测元件,形成光源产生,传播和接收通道 ; 当电梯主轴受到一定的转矩时,在第一光学孔和第二光学孔之间产生相应的位移,从而测量最终到达第二光学孔的光量的变化,以便测量第 旋转轴,最后计算轴转矩的大小。 在不损坏原始设备和基础的情况下,设备可以以不同的转速测量轴的转矩。 该装置可以在轴的不同转速下测量静止扭矩和扭矩,而不会有电磁场干扰无线传输; 该设备易于使用,维护成本低,广受欢迎。

    RELIABILITY ROBUST DESIGN METHOD FOR MULTIPLE FAILURE MODES OF ULTRA-D EEP WELL HOISTING CONTAINER

    公开(公告)号:US20190362041A1

    公开(公告)日:2019-11-28

    申请号:US16333218

    申请日:2017-12-07

    IPC分类号: G06F17/50 E21F13/00

    摘要: A reliability robust design method for multiple failure modes of an ultra-deep well hoisting container, including: defining randomness of a structural parameter, a material property, and a dynamic load of a hoisting container, and solving a random response of a structural failure for a random parameter using a design of experiment method; establishing reliability performance functions of each failure modes in accordance with failure criterion of the hoisting container; establishing a joint probability model of correlated failures using a copula theory in consideration of probability correlation between the failure modes; establishing, a system reliability model with failure correlation of the hoister container; establishing a sensitivity model concerning each random parameter for system reliability of the hoisting container; and establishing, in conjunction with an optimization design model, a reliability robust optimization design model for the hoisting container using a joint failure probability and parameter sensitivity as constraints.

    MOVEMENT-SYNCHRONIZED WELLBORE INSPECTION SYSTEM AND MOVEMENT SYNCHRONIZATION CONTROL METHOD THEREOF

    公开(公告)号:US20210277765A1

    公开(公告)日:2021-09-09

    申请号:US17043682

    申请日:2019-11-11

    IPC分类号: E21B47/00 B25J11/00

    摘要: A movement-synchronized wellbore inspection system and a movement-synchronization control method thereof are disclosed. The wellbore inspection system comprises a rope-climbing robot, a wire rope, a ground wire rope moving device, a ground wire rope moving track, an underground wire rope moving device, an underground wire rope moving track, an inertial sensor and a control device. An upper end of the wire rope is connected to the ground wire rope moving device, and an lower end of the wire rope passes through the rope-climbing robot and is then connected to the underground wire rope moving device. The control device controls the underground and ground wire rope moving devices to move in synchronization, and then the inertial sensor carried on the rope-climbing robot detects posture data of the wire rope and transmits the data to the control device.

    ROPE CLIMBING ROBOT CAPABLE OF SURMOUNTING OBSTACLE AND OBSTACLE SURMOUNTING METHOD THEREOF

    公开(公告)号:US20210276599A1

    公开(公告)日:2021-09-09

    申请号:US17043704

    申请日:2019-11-11

    IPC分类号: B61B7/06 B61L27/04 B25J5/02

    摘要: Disclosed in the present invention are a rope climbing robot capable of surmounting an obstacle and an obstacle surmounting method thereof. The rope climbing robot includes a robot body. The robot body includes a shell, a drive module and a guide module. The shell is longitudinally cut into an even number of shell segments, and is laterally cut into a corresponding drive housing segment and a corresponding guide housing segment according to mounting positions of the drive module and the guide module in the shell. There is at least one guide module and at least one guide housing segment, and a shell opening mechanism is further mounted in the shell. The shell opening mechanism includes a first shell opening mechanism configured to open/close the guide housing segment and a second shell opening mechanism configured to open/close the drive housing segment.

    TENSION BALANCE SYSTEM AND METHOD FOR STEEL WIRE ROPES ON FRICTION HOISTING DRIVING END OF ULTRA-DEEP WELL

    公开(公告)号:US20210053805A1

    公开(公告)日:2021-02-25

    申请号:US17044841

    申请日:2019-09-12

    IPC分类号: B66D1/52 E21B19/00

    摘要: A tension balance system for steel wire ropes on a friction hoisting driving end of an ultra-deep well includes a friction wheel, left and right guiding wheels, left and right steel wire ropes, left and right adjustment wheels, left and right rewinding wheels, left and right adjustment oil cylinders, a hydraulic pipeline, a pump station, a pipeline switch group, left and right hoisting containers, balance ropes, and reels. The friction wheel is disposed in the middle, the left and right adjustment wheels and the left and right rewinding wheels are circularly distributed around the friction wheel, the left and right guiding wheels, the left and right adjustment wheels, and left and right rewinding wheels are all symmetrically disposed on two sides of the friction wheel; both a quantity of left steel wire ropes and a quantity of right steel wire ropes are even numbers more than 2.

    CHAIN FAULT DIAGNOSIS SYSTEM AND METHOD FOR SCRAPER CONVEYOR

    公开(公告)号:US20180229941A1

    公开(公告)日:2018-08-16

    申请号:US15571045

    申请日:2016-12-07

    IPC分类号: B65G43/06 G01L1/22 B65G19/22

    摘要: A chain fault diagnosis system and a chain fault diagnosis method for a scraper conveyor are provided. The diagnosis system includes a strain rosette attached on a top end surface of each sprocket tooth of the scraper conveyor. The strain rosette is connected to a signal gathering unit fixed on a scraper conveyor roller through a shielded conductor, the signal gathering unit sends a gathered signal to a wireless receiving device by means of wireless transmission, and the wireless receiving device transmits the gathered signal obtained thereby to an industrial control computer through a USB interface. The diagnosis method includes the following three steps: chain dislocation/skip fault judgment, chain breakage fault judgment and chain seizure fault judgment. A comprehensive monitoring of the chain state of the scraper conveyor is performed by measuring strain magnitudes in different directions of the sprocket tooth in real-time, transmitting the gathered signal to the industrial control computer via a wireless transmission method and dynamically diagnosing the faults of seizure, dislocation, skip and breakage of the scraper conveyor chain based on the obtained strain data.

    VEHICLE-MOUNTED LARGE-FLOW FIRE-FIGHTING FOAM FLUID MIXING SYSTEM

    公开(公告)号:US20210346740A1

    公开(公告)日:2021-11-11

    申请号:US16975421

    申请日:2019-05-14

    IPC分类号: A62C5/02

    摘要: The present invention discloses a vehicle-mounted large-flow fire-fighting foam fluid mixing system, including a supply kit, a mixing kit, a control kit, and a pipeline kit. The supply kit includes an auxiliary gas supply device, a fire pump, an integrated foam pump, a fire pump main motor, and a coupling. The mixing kit includes a fire monitor interface, a foam generating device, and a fluid mixing device. The control kit includes a foam mixing proportion single-chip microcomputer control system, an alarm module, a power module, an auxiliary air compressor switch module, a frequency converter, and a central control display screen. The pipeline kit includes an air drainage tube, a fire hose, a foam liquid pipe, and a pipeline valve. For the problems of flow fluctuation and low foam foaming efficiency, the present invention optimizes the design and adopts a new control policy, thereby implementing precise mixing under the large-flow condition.

    ONLINE MONITORING SYSTEM FOR CRACK ON HOIST SPINDLE AND OPERATION METHOD THEREOF

    公开(公告)号:US20210041402A1

    公开(公告)日:2021-02-11

    申请号:US16760040

    申请日:2019-07-11

    摘要: Disclosed are an online monitoring system for a crack on a hoist spindle and an operation method thereof. The system comprises: a rope power part, a crack detection part, a wireless transmission part, and a computer. The rope power part comprises two traction ropes, two guide wheels, two stepper motors, and two stepper motor drivers. The crack detection part comprises a spiral tube guide rail, a sliding body, and an ultrasonic generator. The wireless transmission part comprises three zigbee wireless sensing modules. The zigbee wireless sensing modules receive instructions from the computer and transmit the instructions to the stepper motor drivers to control the motors to rotate. The stepper motors drive the guide wheels to rotate to realize the winding of the ropes, so as to pull the sliding body to slide on the spiral tube guide rail. The ultrasonic generator clamped on the sliding body monitors the rotating spindle along the spiral tube guide rail. The zigbee wireless sensing modules transmit the detected data to the computer in real time. The present invention can effectively monitor a hoist spindle in time before a failure occurs, thereby avoiding safety accidents.

    SELF-PRIMING WATER TURBINE-DRIVEN REEL SPRINKLER IRRIGATION MACHINE

    公开(公告)号:US20210000026A1

    公开(公告)日:2021-01-07

    申请号:US16337914

    申请日:2018-06-25

    IPC分类号: A01G25/09 B05B9/00 B05B9/04

    摘要: A self-priming water turbine-driven reel sprinkler irrigation machine includes a framework, a plug board, a reel, a PE pipe, a water turbine driving device, a sprinkler wagon, and a self-priming device. The framework comprises an underframe, a reel support frame, a plug board support frame, and a wheel assembly. A bottom portion of the underframe is provided with an underframe rotary device, and the underframe rotary device comprises a rotary bearing and a chassis support member. An inner ring of the rotary bearing is fixedly mounted to the underframe, and an outer ring of the rotary bearing is fixedly mounted and connected to the chassis support member. A telescopic front support is disposed at a front part of the underframe. The wheel assembly comprises a wheel support beam, a wheel, and a wheel lifting hydraulic cylinder. The self-priming device comprises a water pump, a pumping hose, and a filtering mechanism.