摘要:
A method for the formation of an air gap structure for use in inter-metal applications. A metal pattern of metal lines is formed, a layer of Plasma Polymerized Methylsilane (PPMS) resist is deposited on top of this pattern. The surface of the PPMS resist is subjected to selective exposure. The unexposed PPMS is removed after which the process is completed by closing up the openings within the PPMS.
摘要:
A new method of forming air gaps between adjacent conducting lines of a semiconductor circuit by using a “holes everywhere” or a “reverse metal holes” mask that can be used to create holes in a dielectric layer. The dielectric that is being etched has been deposited across conducting lines, the holes that are being formed in this manner are closed by depositing a dielectric across the top of the holes. The holes can be etched across the entire layer of the deposited dielectric or can be etched in between the conducting lines.
摘要:
A method for creating low intra-level dielectric interface between conducting lines using conventional deposition and etching processes. A layer of conducting lines is formed interspersed with dielectric material. A dummy, high-density pattern of low k dielectric material is created on top of this layer. The dielectric material between the metal lines is removed. The dummy high-density pattern is interconnected, deposited on top of this interconnected layer is a low k dielectric to form an inter layer dielectric.
摘要:
An interconnect line on an IMD layer on a semiconductor device is formed in an interconnect hole in the IMD layer. The interconnect hole has walls and a bottom in the IMD layer. A diffusion barrier is formed on the walls and the bottom of the hole. Fill the interconnect hole with a copper metal line. Perform a CMP step to planarize the device and to remove copper above the IMD layer. Deposit a passivating metal layer on the surface of the copper metal line encapsulating the copper metal line at the top of the hole. Alternatively, a blanket deposit of a copper metal line layer covers the diffusion layer and fills the interconnect hole with a copper metal line. Perform a CMP process to planarize the device to remove copper above the IMD layer. Deposit a passivating metal layer on the surface of the copper metal line encapsulating the copper metal line at the top of the hole in a self-aligned deposition process.
摘要:
Low current leakage DRAM structures are achieved using a selective silicon epitaxial growth over an insulating layer on memory cell (device) areas. An insulating layer, that also serves as a stress-release layer, and a Si3N4 hard mask are patterned to leave portions over the memory cell areas. Shallow trenches are etched in the substrate and filled with a CVD oxide which is polished back to the hard mask to form shallow trench isolation (STI) around the memory cell areas. The hard mask is selectively removed to form recesses in the STI aligned over the memory cell areas exposing the underlying insulating layer. Openings are etched in the insulating layer to provide a silicon-seed surface from which is grown a selective epitaxial layer extending over the insulating layer within the recesses. After growing a gate oxide on the epitaxial layer, FETs and DRAM capacitors can be formed on the epitaxial layer. The insulating layer under the epitaxial layer drastically reduces the capacitor leakage current and improves DRAM device performance. This self-aligning method also increases memory cell density, and is integratable into current DRAM processes to reduce cost.
摘要:
In accordance with the objectives of the invention a new method is provided for creating air gaps in a layer of IMD. First and second layers of dielectric are successively deposited over a surface; the surface contains metal lines running in an Y-direction. Trenches are etched in the first and second layer of dielectric in an X and Y-direction respectively. The trenches are filled with a layer of nitride and polished. A thin layer of oxide is deposited over the surface of the second layer of dielectric. Openings are created through the thin layer of oxide that align with the points of intersect of the nitride in the trenches in the layers of dielectric. The nitride is removed from the trenches by a wet etch, thereby opening trenches in the layers of dielectric with both sets of trenches being interconnected. The openings in the thin layer of oxide are closed, leaving a network of trenches containing air in the two layers of dielectric.
摘要:
An interconnect line on an IMD layer on a semiconductor device is formed in an interconnect hole in the IMD layer. The interconnect hole has walls and a bottom in the IMD layer. A diffusion barrier is formed on the walls and the bottom of the hole. Fill the interconnect hole with a copper metal line. Perform a CMP step to planarize the device and to remove copper above the IMD layer. Deposit a passivating metal layer on the surface of the copper metal line encapsulating the copper metal line at the top of the hole. Alternatively, a blanket deposit of a copper metal line layer covers the diffusion layer and fills the interconnect hole with a copper metal line. Perform a CMP process to planarize the device to remove copper above the IMD layer. Deposit a passivating metal layer on the surface of the copper metal line encapsulating the copper metal line at the top of the hole in a self-aligned deposition process.
摘要:
The invention provides a new multilevel interconnect structure of air gaps in a layer of IMD. A first layer of dielectric is provided over a surface; the surface contains metal points of contact. Trenches are provided in this first layer of dielectric. The trenches are filled with a first layer of nitride or disposable solid and polished. A second layer of dielectric is deposited over the first layer of dielectric. Trenches are formed in the second layer of dielectric, a second layer of nitride or disposable solid is deposited over the second layer of dielectric. The layer of nitride or disposable solid is polished. A thin layer of oxide is deposited over the surface of the second layer of dielectric. The thin layer of oxide is masked and etched thereby creating openings in this thin layer of oxide, these openings align with the points of intersect of the trenches in the first layer of dielectric and in the second layer of dielectric. The nitride or removable solid is removed from the trenches. The openings in the thin layer of oxide are closed off leaving a network of trenches that are filled with air in the two layers of dielectric that now function as the Inter Level Dielectric.
摘要:
Low current leakage DRAM structures are achieved using a selective silicon epitaxial growth over an insulating layer on memory cell (device) areas. An insulating layer, that also serves as a stress-release layer, and a Si3N4 hard mask are patterned to leave portions over the memory cell areas. Shallow trenches are etched in the substrate and filled with a CVD oxide which is polished back to the hard mask to form shallow trench isolation (STI) around the memory cell areas. The hard mask is selectively removed to form recesses in the STI aligned over the memory cell areas exposing the underlying insulating layer. Openings are etched in the insulating layer to provide a silicon-seed surface from which is grown a selective epitaxial layer extending over the insulating layer within the recesses. After growing a gate oxide on the epitaxial layer, FETs and DRAM capacitors can be formed on the epitaxial layer. The insulating layer under the epitaxial layer drastically reduces the capacitor leakage current and improves DRAM device performance. This self-aligning method also increases memory cell density, and is integratable into current DRAM processes to reduce cost.
摘要:
A method for forming shallow trench isolation (STI) with a higher aspect ratio is given. This method allows the formation of narrower and deeper trench isolation regions while avoiding substrate damage due to excessive etching and severe microloading effects. In addition, it yields uniform depth trenches while avoiding problems of etch residue at the bottom of the trench. This method is achieved by using a process where a trench is etched, and an oxide layer grown along the bottom and sidewalls of the trench. Oxygen or field isolation ions are then implanted into the bottom of the trench. A nitride spacer is then formed along the bottom and sidewalls of the trench, followed by an isotropic etch removing the nitride and oxide from the bottom of the trench. An oxide deposition then fills the trench, followed by a planarization step completing the isolation structure.