摘要:
Provided is a trench-type capacitor. To form the capacitor, first and second active regions are disposed in a semiconductor substrate. Node patterns are disposed in the first active region. Each node pattern may have a conductive pattern and an insulating pattern, which are sequentially stacked. Impurity diffusion regions are disposed in the vicinity of the node patterns. Substrate connection patterns in electrical contact with the first and second active regions are disposed. Node connection patterns in electrical contact with the node patterns are disposed in the vicinity of the first and second active regions. In addition, a semiconductor device having the trench-type capacitor and a semiconductor module having the semiconductor device is provided.
摘要:
Provided is a trench-type capacitor. To form the capacitor, first and second active regions are disposed in a semiconductor substrate. Node patterns are disposed in the first active region. Each node pattern may have a conductive pattern and an insulating pattern, which are sequentially stacked. Impurity diffusion regions are disposed in the vicinity of the node patterns. Substrate connection patterns in electrical contact with the first and second active regions are disposed. Node connection patterns in electrical contact with the node patterns are disposed in the vicinity of the first and second active regions. In addition, a semiconductor device having the trench-type capacitor and a semiconductor module having the semiconductor device is provided.
摘要:
There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures. A bit line separation insulating layer and a peripheral circuit isolation layer are formed inside the bit line separation trench and the peripheral circuit trench, respectively.
摘要:
There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures. A bit line separation insulating layer and a peripheral circuit isolation layer are formed inside the bit line separation trench and the peripheral circuit trench, respectively.
摘要:
Field effect transistors include a substrate and a pillar that extends away from the substrate. The pillar includes a base adjacent the substrate, a top remote from the substrate, and a sidewall that extends between the base and the top. An insulated gate is provided on the sidewall. A first source/drain region is provided in the substrate beneath the pillar and adjacent the insulated gate. A second source/drain region that is heavily doped compared to the first source/drain region, is provided in the substrate beneath the pillar and remote from the insulated gate. The pillar may be an I-shaped pillar that is narrower between the base and the top compared to adjacent the base and the top, such that the sidewall includes a recessed portion between the base and the top.
摘要:
There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures. A bit line separation insulating layer and a peripheral circuit isolation layer are formed inside the bit line separation trench and the peripheral circuit trench, respectively.
摘要:
A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
摘要:
A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
摘要:
Field effect transistors include a substrate and a pillar that extends away from the substrate. The pillar includes a base adjacent the substrate, a top remote from the substrate, and a sidewall that extends between the base and the top. An insulated gate is provided on the sidewall. A first source/drain region is provided in the substrate beneath the pillar and adjacent the insulated gate. A second source/drain region that is heavily doped compared to the first source/drain region, is provided in the substrate beneath the pillar and remote from the insulated gate. The pillar may be an I-shaped pillar that is narrower between the base and the top compared to adjacent the base and the top, such that the sidewall includes a recessed portion between the base and the top.
摘要:
A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.