摘要:
The embodiments of processes and structures described above provide mechanisms for improving mobility of carriers. The dislocations in the source and drain regions and the strain created by the doped epitaxial materials next to the channel region of a transistor both contribute to the strain in the channel region. As a result, the device performance is improved.
摘要:
The present disclosure provides a method for making an integrated circuit in one embodiment. The method includes providing a semiconductor substrate having an active region and a first gate stack disposed on the semiconductor substrate in the active region; forming in-situ phosphorous-doped silicon carbide (SiCP) features on the semiconductor substrate and disposed on sides of the first gate stack; replacing the first gate stack with a second gate stack having a high k dielectric material layer; and thereafter performing a millisecond annealing (MSA) process with a thermal profile having a first thermal wavelet and a second thermal wavelet.
摘要:
The present disclosure provides a method for making an integrated circuit in one embodiment. The method includes providing a semiconductor substrate having an active region and a first gate stack disposed on the semiconductor substrate in the active region; forming in-situ phosphorous-doped silicon carbide (SiCP) features on the semiconductor substrate and disposed on sides of the first gate stack; replacing the first gate stack with a second gate stack having a high k dielectric material layer; and thereafter performing a millisecond annealing (MSA) process with a thermal profile having a first thermal wavelet and a second thermal wavelet.
摘要:
An integrated circuit includes a gate electrode disposed over a substrate. A source/drain (S/D) region is disposed adjacent to the gate electrode. The S/D region includes a diffusion barrier structure disposed in a recess of the substrate. The diffusion barrier structure includes a first portion and a second portion. The first portion is adjacent to the gate electrode. The second portion is distant from the gate electrode. An N-type doped silicon-containing structure is disposed over the diffusion barrier structure. The first portion of the diffusion barrier structure is configured to partially prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate. The second portion of the diffusion barrier structure is configured to substantially completely prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate.