摘要:
An integrated circuit includes a gate electrode disposed over a substrate. A source/drain (S/D) region is disposed adjacent to the gate electrode. The S/D region includes a diffusion barrier structure disposed in a recess of the substrate. The diffusion barrier structure includes a first portion and a second portion. The first portion is adjacent to the gate electrode. The second portion is distant from the gate electrode. An N-type doped silicon-containing structure is disposed over the diffusion barrier structure. The first portion of the diffusion barrier structure is configured to partially prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate. The second portion of the diffusion barrier structure is configured to substantially completely prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate.
摘要:
A method of forming an integrated circuit includes forming a gate structure over a substrate. A plasma doping (PLAD) process is performed to at least a portion of the substrate that is adjacent to the gate structure. The doped portion of the substrate is annealed in an ambient with an oxygen-containing chemical.
摘要:
A method of forming an integrated circuit includes providing a semiconductor wafer including a semiconductor fin dispatched on a surface of the semiconductor wafer; forming a dopant-rich layer having an impurity on a top surface and sidewalls of the semiconductor fin, wherein the impurity is of n-type or p-type; performing a knock-on implantation to drive the impurity into the semiconductor fin; and removing the dopant-rich layer.
摘要:
A method of forming an integrated circuit includes providing a semiconductor wafer including a semiconductor fin dispatched on a surface of the semiconductor wafer; forming a dopant-rich layer having an impurity on a top surface and sidewalls of the semiconductor fin, wherein the impurity is of n-type or p-type; performing a knock-on implantation to drive the impurity into the semiconductor fin; and removing the dopant-rich layer.
摘要:
The present disclosure provides a method for making an integrated circuit in one embodiment. The method includes providing a semiconductor substrate having an active region and a first gate stack disposed on the semiconductor substrate in the active region; forming in-situ phosphorous-doped silicon carbide (SiCP) features on the semiconductor substrate and disposed on sides of the first gate stack; replacing the first gate stack with a second gate stack having a high k dielectric material layer; and thereafter performing a millisecond annealing (MSA) process with a thermal profile having a first thermal wavelet and a second thermal wavelet.
摘要:
The embodiments of processes and structures described above provide mechanisms for improving mobility of carriers. The dislocations in the source and drain regions and the strain created by the doped epitaxial materials next to the channel region of a transistor both contribute to the strain in the channel region. As a result, the device performance is improved.
摘要:
The present disclosure provides a method for making an integrated circuit in one embodiment. The method includes providing a semiconductor substrate having an active region and a first gate stack disposed on the semiconductor substrate in the active region; forming in-situ phosphorous-doped silicon carbide (SiCP) features on the semiconductor substrate and disposed on sides of the first gate stack; replacing the first gate stack with a second gate stack having a high k dielectric material layer; and thereafter performing a millisecond annealing (MSA) process with a thermal profile having a first thermal wavelet and a second thermal wavelet.
摘要:
A method of forming an integrated circuit includes providing a semiconductor wafer; and forming a fin field-effect transistor (FinFET) including implanting the semiconductor wafer using a hot-implantation to form an implanted region in the FinFET. The implanted region comprises a region selected from the group consisting essentially of a lightly doped source and drain region, a pocket region, and a deep source drain region.
摘要:
A method of forming an integrated circuit includes providing a semiconductor wafer; and forming a fin field-effect transistor (FinFET) including implanting the semiconductor wafer using a hot-implantation to form an implanted region in the FinFET. The implanted region comprises a region selected from the group consisting essentially of a lightly doped source and drain region, a pocket region, and a deep source drain region.
摘要:
Mechanisms for forming source/drain (S/D) regions of field effect transistors (FETs) are provided. The mechanisms eliminate dislocations near gate corners and gate corner defects (GCDs), and maintain transistor performance. The mechanisms described involve using a post-deposition etch to remove residual dislocations near gate corners after a cyclic deposition and etching (CDE) process is used to fill a portion of the recess regions with an epitaxially grown silicon-containing material. The mechanisms described also minimize the growth of dislocations near gate corners during the CDE process. The remaining recess regions may be filled by another silicon-containing layer deposited by an epitaxial process without forming dislocations near gate corners. The embodiments described enable gate corners to be free of dislocation defects, preserve the device performance from degradation, and widen the process window of forming S/D regions without gate corner defects and chamber matching issues.