摘要:
A semiconductor chip includes a semiconductor substrate 126, in which first and second active regions are disposed. A resistor 124 is formed in the first active region and the resistor 124 includes a doped region 128 formed between two terminals 136. A strained channel transistor 132 is formed in the second active region. The transistor includes a first and second stressor 141, formed in the substrate oppositely adjacent a strained channel region 143.
摘要:
Provided is a semiconductor device and a method for its fabrication. The device includes a semiconductor substrate, a first silicide in a first region of the substrate, and a second silicide in a second region of the substrate. The first silicide may differ from the second silicide. The first silicide and the second silicide may be an alloy silicide.
摘要:
A transistor structure comprises a channel region overlying a substrate region. The substrate region comprises a first semiconductor material with a first lattice constant. The channel region comprises a second semiconductor material with a second lattice constant. The source and drain regions are oppositely adjacent the channel region and the top portion of the source and drain regions comprise the first semiconductor material. A gate dielectric layer overlies the channel region and a gate electrode overlies the gate dielectric layer.
摘要:
A method for making a SOI wafer with a strained silicon layer for increased electron and hole mobility is achieved. The method forms a porous silicon layer on a seed wafer. A H2 anneal is used to form a smooth surface on the porous silicon. A strain free (relaxed) epitaxial SixGe1-x layer is deposited and a bonding layer is formed. The seed wafer is then bonded to a handle wafer having an insulator on the surface. A spray etch is used to etch the porous Si layer resulting in a SOI handle wafer having portions of the porous Si layer on the relaxed SixGe1-x. The handle wafer is then annealed in H2 to convert the porous Si to a smooth strained Si layer on the relaxed SiGe layer of the SOI wafer.
摘要翻译:实现了制造具有用于增加电子和空穴迁移率的应变硅层的SOI晶片的方法。 该方法在种子晶片上形成多孔硅层。 使用H 2 H 2退火在多孔硅上形成光滑表面。 沉积无应变的(松弛的)外延的Si 1 x 1-x层,并形成结合层。 然后将种子晶片结合到在表面上具有绝缘体的手柄晶片。 使用喷涂蚀刻来蚀刻多孔Si层,导致SOI处理晶片,其具有在松弛的Si 1 x 1-x x上的多孔Si层的部分。 然后将手柄晶片在H 2 2中退火以将多孔Si转化为SOI晶片的松弛SiGe层上的平滑应变Si层。
摘要:
A process for fabricating CMOS devices, featuring a channel region comprised with a strained SiGe layer, has been developed. The process features the selective growth of a composite silicon layer on the top surface of N well and P well regions. The composite silicon layer is comprised of a thin, strained SiGe layer sandwiched between selectively grown, undoped silicon layers. The content of Ge in the SiGe layer, between about 20 to 40 weight percent, allows enhanced carrier mobility to exist without creation of silicon defects. A thin silicon dioxide gate insulator is thermally grown from a top portion of the selectively grown silicon layer, located overlying the selectively grown SiGe layer.
摘要:
A method comprises providing a semiconductor alloy layer on a semiconductor substrate, forming a gate structure on the semiconductor alloy layer, forming source and drain regions in the semiconductor substrate on both sides of the gate structure, removing at least a portion of the semiconductor alloy layer overlying the source and drain regions, and forming a metal silicide region over the source and drain regions.
摘要:
A semiconductor chip includes a semiconductor substrate 126, in which first and second active regions are disposed. A resistor 124 is formed in the first active region and the resistor 124 includes a doped region 128 formed between two terminals 136. A strained channel transistor 132 is formed in the second active region. The transistor includes a first and second stressor 141, formed in the substrate oppositely adjacent a strained channel region 143.
摘要:
A strained-channel semiconductor structure and method of fabricating the same. The strained-channel semiconductor structure comprises a substrate composed of a first semiconductor material with a first natural lattice constant. A channel region is disposed in the substrate and a gate stack is disposed over the strained channel region. A pair of source/drain regions are oppositely disposed in the substrate adjacent to the channel region, wherein each of the source/drain regions comprises a lattice-mismatched zone comprising a second semiconductor material with a second natural lattice constant rather than the first natural lattice constant, an inner side and an outer side corresponding to the gate stack, and at least one outer sides laterally contacts the first semiconductor material of the substrate.
摘要:
Provided is a semiconductor device and a method for its fabrication. The device includes a semiconductor substrate, a first silicide in a first region of the substrate, and a second silicide in a second region of the substrate. The first silicide may differ from the second silicide. The first silicide and the second silicide may be an alloy silicide.