摘要:
A method for providing a bin ratio forecast at an early stage of integrated circuit device manufacturing processes is disclosed. The method comprises collecting historical data from one or more processed wafer lots; collect measurement data from one or more skew wafer lots; generating an estimated baseline distribution from the collected historical data and collected measurement data; generating an estimated performance distribution based on one or more specified parameters and the generated estimated baseline distribution; determining a bin ratio forecast by applying a bin definition and a yield degradation factor estimation to the generated estimated performance distribution; determining one or more production targets based on the bin ratio forecast; and processing one or more wafers based on the one or more determined production targets.
摘要:
A method for providing a bin ratio forecast at an early stage of integrated circuit device manufacturing processes is disclosed. The method comprises collecting historical data from one or more processed wafer lots; collect measurement data from one or more skew wafer lots; generating an estimated baseline distribution from the collected historical data and collected measurement data; generating an estimated performance distribution based on one or more specified parameters and the generated estimated baseline distribution; determining a bin ratio forecast by applying a bin definition and a yield degradation factor estimation to the generated estimated performance distribution; determining one or more production targets based on the bin ratio forecast; and processing one or more wafers based on the one or more determined production targets.
摘要:
The present disclosure provides a semiconductor manufacturing method. The method includes providing product data of a product, the product data including a sensitive product parameter; searching existing products according to the sensitive product parameter to identify a relevant product from the existing products; determining an initial value of a processing model parameter to the product using corresponding data of the relevant product; assigning the initial value of the processing model parameter to a processing model associated with a manufacturing process; thereafter, tuning a processing recipe using the processing model; and performing the manufacturing process to a semiconductor wafer using the processing recipe.
摘要:
The present disclosure provides a semiconductor manufacturing method. The method includes providing product data of a product, the product data including a sensitive product parameter; searching existing products according to the sensitive product parameter to identify a relevant product from the existing products; determining an initial value of a processing model parameter to the product using corresponding data of the relevant product; assigning the initial value of the processing model parameter to a processing model associated with a manufacturing process; thereafter, tuning a processing recipe using the processing model; and performing the manufacturing process to a semiconductor wafer using the processing recipe.
摘要:
An embodiment is a method for semiconductor processing control. The method comprises identifying a key process stage from a plurality of process stages based on a parameter of processed wafers, forecasting a trend for a wafer processed by the key process stage and some of the plurality of process stages based on the parameter, and dispatching the wafer to one of a first plurality of tools in a tuning process stage. The one of the first plurality of tools is determined based on the trend.
摘要:
An embodiment is a method for semiconductor processing control. The method comprises identifying a key process stage from a plurality of process stages based on a parameter of processed wafers, forecasting a trend for a wafer processed by the key process stage and some of the plurality of process stages based on the parameter, and dispatching the wafer to one of a first plurality of tools in a tuning process stage. The one of the first plurality of tools is determined based on the trend.
摘要:
An embodiment is a method for semiconductor processing control. The method comprises identifying a key process stage from a plurality of process stages based on a parameter of processed wafers, forecasting a trend for a wafer processed by the key process stage and some of the plurality of process stages based on the parameter, and dispatching the wafer to one of a first plurality of tools in a tuning process stage. The one of the first plurality of tools is determined based on the trend.
摘要:
A method comprises computing respective regression models for each of a plurality of failure bins based on a plurality of failures identified during wafer electrical tests. Each regression model outputs a wafer yield measure as a function of a plurality of device performance variables. For each failure bin, sensitivity of the wafer yield measure to each of the plurality of device performance variables is determined, and the device performance variables are ranked with respect to sensitivity of the wafer yield measure. A subset of the device performance variables which have highest rankings and which have less than a threshold correlation with each other are selected. The wafer yield measures for each failure bin corresponding to one of the selected subset of device performance variables are combined, to provide a combined wafer yield measure. At least one new process parameter value is selected to effect a change in the one device performance variable, based on the combined wafer yield measure. The at least one new process parameter value is to be used to process at least one additional wafer.
摘要:
System and method for implementing wafer acceptance test (“WAT”) advanced process control (“APC”) are described. In one embodiment, the method comprises performing a key process on a sample number of wafers of a lot of wafers; performing a key inline measurement related to the key process to produce metrology data for the wafers; predicting WAT data from the metrology data using an inline-to-WAT model; and using the predicted WAT data to tune a WAT APC process for controlling a tuning process or a process APC process.
摘要:
A method comprises computing respective regression models for each of a plurality of failure bins based on a plurality of failures identified during wafer electrical tests. Each regression model outputs a wafer yield measure as a function of a plurality of device performance variables. For each failure bin, sensitivity of the wafer yield measure to each of the plurality of device performance variables is determined, and the device performance variables are ranked with respect to sensitivity of the wafer yield measure. A subset of the device performance variables which have highest rankings and which have less than a threshold correlation with each other are selected. The wafer yield measures for each failure bin corresponding to one of the selected subset of device performance variables are combined, to provide a combined wafer yield measure. At least one new process parameter value is selected to effect a change in the one device performance variable, based on the combined wafer yield measure. The at least one new process parameter value is to be used to process at least one additional wafer.