摘要:
A multi-chip stack structure and a manufacturing method thereof are provided. The fabrication method includes the steps of: providing a chip carrier having a first surface and a second surface opposing thereto and at least a first chip and a second chip mounted on the first surface; electrically connecting the chips to the chip carrier by a plurality of bonding wires; and stacking at least a third chip on the first and second chips by a film deposed therebetween, wherein the third chip is stepwise stacked on the first chip and at least a part of the bonding wire connected to the second chip is covered by the film, and electrically connecting the third chip and the chip carrier by a bonding wire, thereby enabling a plurality of chips to be stacked on the chip carrier to enhance the electrical performance of electronic products.
摘要:
A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires. The bump is used for supporting the leads to a certain height so as to keep the bonding wires from contacting the heating block and eliminate the need of using a second heating block in the second wire bonding process of the prior art, thereby saving time and costs in a fabrication process. Also, as positions where the first and second bonding wires are bonded to the leads on opposite sides of the leadframe correspond with each other, the conventional problems of adversely affected electrical performance and electrical mismatch can be prevented.
摘要:
A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires. The bump is used for supporting the leads to a certain height so as to keep the bonding wires from contacting the heating block and eliminate the need of using a second heating block in the second wire bonding process of the prior art, thereby saving time and costs in a fabrication process. Also, as positions where the first and second bonding wires are bonded to the leads on opposite sides of the leadframe correspond with each other, the conventional problems of adversely affected electrical performance and electrical mismatch can be prevented.
摘要:
A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires. The bump is used for supporting the leads to a certain height so as to keep the bonding wires from contacting the heating block and eliminate the need of using a second heating block in the second wire bonding process of the prior art, thereby saving time and costs in a fabrication process. Also, as positions where the first and second bonding wires are bonded to the leads on opposite sides of the leadframe correspond with each other, the conventional problems of adversely affected electrical performance and electrical mismatch can be prevented.
摘要:
The present invention provides a multi-chip stacking structure. The multichip stacking structure comprises: a chip carrier; a first and a second chip modules respectively having a plurality of first and a plurality of second chips, wherein each chips has a bond pad and the chips are stacked on the chip carrier in a step-like manner to expose the bond pads; and a plurality of bonding wires for electrically connecting the bond pads of the first and the second chip modules to the chip carrier, wherein a bottom chip of the second chip module is stacked on a top chip of the first chip module by an adhesive layer having fillers therein to support the bottom chip, and the bottom chip is deviated from the top chip horizontally in a direction toward the bonding wires of the first chip module.
摘要:
The present invention provides a fabrication method of a multi-chip stacking structure. The method includes steps of: stacking the first chips on the chip carrier in a step-like manner to form a first chip module; electrically connecting the first chip module to the chip carrier by a plurality of first bonding wires; stacking the second chips on the first chip module in step-like manner to form a second chip module, wherein a bottom chip of the second chip module is stacked on a top chip of the first chip module by an adhesive layer with the bottom chip deviated from the top chip horizontally in a direction toward the first bonding wires; and electrically connecting the bond pads of the second chip module to the chip carrier by a plurality of second bonding wires.
摘要:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficulty.
摘要:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficulty.
摘要:
A semiconductor package with stacked chips and a method for fabricating the same are proposed. The semiconductor package includes a lead frame having a plurality of leads and supporting extensions; at least one preformed package having an active surface, and a non-active surface attached to the supporting extensions of the lead frame; at least one chip mounted on the active surface of the preformed package; a plurality of bonding wires for electrically interconnecting the lead frame, the preformed package and the chip; and an encapsulant for encapsulating the preformed package, the chip, the bonding wire and a portion of the lead frame. The active surface of the preformed package serves for carrying the chip and can be used as a wire jumper, so as to solve a known good die (KGD) problem of a multi-chip module.
摘要:
A semiconductor package with stacked chips and a method for fabricating the same are proposed. The semiconductor package includes a lead frame having a plurality of leads and supporting extensions; at least one preformed package having an active surface, and a non-active surface attached to the supporting extensions of the lead frame; at least one chip mounted on the active surface of the preformed package; a plurality of bonding wires for electrically interconnecting the lead frame, the preformed package and the chip; and an encapsulant for encapsulating the preformed package, the chip, the bonding wire and a portion of the lead frame. The active surface of the preformed package serves for carrying the chip and can be used as a wire jumper, so as to solve a known good die (KGD) problem of a multi-chip module.