摘要:
The invention relates to a tester for pressure sensors in the wafer compound or isolated pressure sensors having a recess for the pressure sensors as well as means for electrical contacting of the electrical connections of at least one of the pressure sensors. The invention is intended to make it possible to test pressure sensors still in a wafer compound for their function. According to the invention, a pressure head is provided which has an interior space open on one side, the open face of which is capable of being mounted on the pressure sensor in such a way that the interior space is tightly sealed by the latter. In this way a static or dynamic pressure of specified amount and duration can be exerted on the sensor element at least so that the sensor element is moved out of its resting position. At the same time, the electrical connections of the selected pressure sensor are connected with an electrical evaluation unit.
摘要:
The invention, which relates to a test apparatus with loading device which has a chuck, which is provided with a bearing surface for a test substrate and with a chuck drive, by means of which the chuck can be displaced with a working area, and which has a receiving means for receiving test substrates, which can be displaced from a working area of the chuck to a receiving position outside the working area, is based on the object of increasing the accuracy of the movement of the chuck. Moreover, in the case of test apparatus with a controlled atmosphere, a further object is to prevent the chuck from being exposed to the open-air atmosphere. This is achieved by virtue of the fact that a carriage, which can be displaced between a position close to the chuck, in which the chuck is located in a position inside the working area, and the receiving position, is provided, which carriage is provided with a holder, in which the test substrate can be at least indirectly inserted in such a way that the test substrate, when the carriage is in the position close to the chuck, is located above the chuck. The holder and the chuck can move vertically relative to one another when the carriage is in the position close to the chuck.
摘要:
A method is provided for increasing the accuracy of the positioning of a first object relative to a second object. The method overcomes the disadvantageous influence of thermal drift between a first and a second object during a positioning of a first object on a second object. The method finds applications in manufacturing, for example, in the manufacturing of semiconductor components. The method utilizes recognition of structures on the second object which have a minimum structure width. At a first instant, using one recognition procedure, the first object is positioned on the second object in a desired position. The relative displacement of the two objects is determined at the first instant and on at least one subsequent instant. A second recognition procedure may be used for this purpose. The second recognition procedure may have a resolution accuracy which is different than the resolution accuracy of the first resolution procedure. The second recognition procedure may be a pattern recognition method. The relative displacement determined at the second instant is used to correct the positioning of the first and second objects as necessary to maintain a desired position of the two objects.
摘要:
A substrate-holding device is designed as a one-piece ceramic element having a number of variably heavily doped layer regions. At least one layer region is a conductive region and at least one layer region is an insulative region. A multilayer chuck structure is thereby formed which does not exhibit mechanical surface interfaces between the layers.
摘要:
A method is provided for increasing the accuracy of the positioning of a first object relative to a second object. The method overcomes the disadvantageous influence of thermal drift between a first and a second object during a positioning of a first object on a second object. The method finds applications in manufacturing, for example, in the manufacturing of semiconductor components. The method utilizes recognition of structures on the second object which have a minimum structure width. At a first instant, using one recognition procedure, the first object is positioned on the second object in a desired position. The relative displacement of the two objects is determined at the first instant and on at least one subsequent instant. A second recognition procedure may be used for this purpose. The second recognition procedure may have a resolution accuracy which is different than the resolution accuracy of the first resolution procedure. The second recognition procedure may be a pattern recognition method. The relative displacement determined at the second instant is used to correct the positioning of the first and second objects as necessary to maintain a desired position of the two objects.
摘要:
The invention generally relates to a method and device for contacting contact areas (22) with probe tips (18) in a tester. The contact areas (22), which are arranged on a substrate (6), and the probe tips (18) are positioned relative to each other and then brought in contact with each other by an advancing motion. In order to detect a secure contact for each of the probe tips (18), the contacting between the probe tips (18) and the contact areas (22) is observed from at least two observation directions (34), which include an observation angle α in a range of 0 to 180°.
摘要:
The invention generally relates to a method and device for contacting contact areas (22) with probe tips (18) in a tester. The contact areas (22), which are arranged on a substrate (6), and the probe tips (18) are positioned relative to each other and then brought in contact with each other by an advancing motion. In order to detect a secure contact for each of the probe tips (18), the contacting between the probe tips (18) and the contact areas (22) is observed from at least two observation directions (34), which include an observation angle α in a range of 0 to 180°.
摘要:
A test apparatuss for testing substrates at low temperatures has a chuck, which can be displaced in the working area by means of a chuck drive, the temperature of which can be controlled using heating and cooling means. The chuck has a receiving surface for receiving a test substrate and holding means for fixing a substrate carrier which receives the test substrate. Spatially and thermally defined test conditions are maintained with minimal energy and labor costs both at room temperatures and at low temperatures. This is achieved by providing a vacuum chamber which surrounds the working area of the chuck. The chuck is on one side thermally decoupled from the uncooled chuck drive and on the other side is thermally connected in a releasable manner to the test substrate. The cooled chuck and the cooled test substrate are shielded from the thermal radiation of the surrounding uncooled assemblies by means of a directly cooled thermal radiation shield.
摘要:
Arrangement and method for testing a substrate under load with a prober are provided, by which the full productivity of the prober can be exploited. The arrangement includes a chuck, a chuck driver, control electronics, probe or probe card holding means, and has a loading means for applying a thermal, mechanical, electrical or other physical or chemical loading to the substrate. The substrate is subjected to a loading and then its properties are measured by means of the prober. The loading means is arranged as a separate subassembly separated from the prober and therein is connected to the latter via a handling system. The method provides for the substrate to be brought into operative connection with a loading means, subjected to the loading in this loading means, then removed from the loading means and tested in terms of its functions.
摘要:
An apparatus for testing substrates reduces the area required and the costs which arise with the testing of substrates, in particular semiconductor wafers, during the production process. The apparatus includes testing arrangements comprising a chuck, a chuck drive, control electronics, probe or probe board holding means with a handling system, a substrate magazine station and an alignment station. The testing arrangements include at least two testing arrangements, both of which are all jointly operatively connected to the handling system, the substrate magazine station and the alignment station.