Abstract:
A method of substantially preventing road speed excursions while traversing a road grade event includes receiving, by a controller, vehicle operations data regarding operation of a vehicle and road grade data regarding an upcoming road grade of a path ahead of the vehicle. The method additionally includes determining, by the controller, an amount of braking power that substantially prevents the vehicle from exceeding a speed threshold regarding operation of the vehicle based on the road grade and vehicle operations data, and determining an amount of engine braking power based on a current transmission setting. The method further includes controlling, by the controller, a transmission setting in response to a determination that the amount of engine braking power is less than the amount of braking power.
Abstract:
One embodiment is a system comprising an internal combustion engine including an output shaft, a pulley system structured to be driven by the output shaft, a first alternator and a second alternator structured to be driven by the pulley system, and an electromagnetic clutch integrated within one of the pulley system, the first alternator and the second alternator and structured to selectably couple and decouple at least one of the first alternator and the second alternator from the output shaft. The system includes a controller in operative communication with the internal combustion engine system and structured to evaluate power demand and power production capability parameters of the system and to control the electromagnetic clutch to engage or disengage in response to the evaluation.
Abstract:
A system, method, and apparatus include a controller structured to predict a change in speed of a vehicle in advance of upcoming terrain and inhibit a coasting event if the speed exceeds a limit. In one form a velocity of the vehicle is predicted using a physics based model of the vehicle within a look ahead window in front of a vehicle. Such a look ahead window can be distance or time based. In another, speed of a vehicle is monitored during a coasting event and is compared against a threshold to determine whether to remain coasting or re-engage an engine to a driveline. The threshold is a function of road grade, and permits a larger deviation from set speed at low grade than at high grade. The function can be based on road grade and vehicle weight.
Abstract:
A system, method, and apparatus includes management of coasting during operation of a vehicle equipped with a predictive cruise control system.
Abstract:
Systems, apparatuses, and methods herein relate to vehicle speed management. The apparatus includes a projection module structured to determine a future road load for a vehicle based on horizon data regarding an attribute of a route of the vehicle at a future location of the vehicle. The apparatus also includes a vehicle drafting module structured to determine a drafting road load for the vehicle based on drafting data regarding operation of a second vehicle. The apparatus further includes a vehicle speed management module structured to determine and provide a vehicle speed adjustment to an output device of the vehicle to at least one of facilitate and maintain a drafting arrangement between the vehicle and the second vehicle responsive to at least one of the future road load and the drafting road load.
Abstract:
A method of substantially preventing road speed excursions while traversing a road grade event includes receiving, by a controller, vehicle operations data regarding operation of a vehicle and road grade data regarding an upcoming road grade of a path ahead of the vehicle. The method additionally includes determining, by the controller, an amount of braking power that substantially prevents the vehicle from exceeding a speed threshold regarding operation of the vehicle based on the road grade and vehicle operations data, and determining an amount of engine braking power based on a current transmission setting. The method further includes controlling, by the controller, a transmission setting in response to a determination that the amount of engine braking power is less than the amount of braking power.
Abstract:
A system, method, and apparatus include a controller structured to predict a change in speed of a vehicle in advance of upcoming terrain and inhibit a coasting event if the speed exceeds a limit. In one form a velocity of the vehicle is predicted using a physics based model of the vehicle within a look ahead window in front of a vehicle. Such a look ahead window can be distance or time based. In another, speed of a vehicle is monitored during a coasting event and is compared against a threshold to determine whether to remain coasting or re-engage an engine to a driveline. The threshold is a function of road grade, and permits a larger deviation from set speed at low grade than at high grade. The function can be based on road grade and vehicle weight.
Abstract:
A powertrain including a prime mover and an electronically controllable clutch. The powertrain structured selectably engages the clutch to provide power from the prime mover to drive one or more ground contacting wheels and to selectably disengage the clutch to decouple with one or more ground contacting wheels. The electronic control system operatively communicates with the prime mover and the electronically controllable clutch, and uses a predictive cruise control (PCC) controller and an idle coast management (ICM) controller, to control vehicle speed during concurrent operation of the PCC controller and the ICM controller.
Abstract:
A powertrain including a prime mover and an electronically controllable clutch. The powertrain structured selectably engages the clutch to provide power from the prime mover to drive one or more ground contacting wheels and to selectably disengage the clutch to decouple with one or more ground contacting wheels. The electronic control system operatively communicates with the prime mover and the electronically controllable clutch, and uses a predictive cruise control (PCC) controller and an idle coast management (ICM) controller, to control vehicle speed during concurrent operation of the PCC controller and the ICM controller.
Abstract:
A method of substantially preventing road speed excursions while traversing a road grade includes: determining, by a controller, a predicted over speed for a vehicle during an upcoming downhill grade based on a difference between a predicted engine braking power of the vehicle and an amount of braking power that substantially prevents a speed of the vehicle from exceeding a speed threshold; and responsive to the determination, controlling, by the controller, one or more components of the vehicle to substantially prevent the vehicle from exceeding the speed threshold.