Abstract:
A semiconductor device includes a GaN device provided with: a substrate made of a semi-insulating material or a semiconductor; a channel-forming layer including a GaN layer arranged on the substrate; a gate structure in which a gate-insulating film in contact with the GaN layer is arranged on the channel-forming layer, the gate structure having a gate electrode arranged across the gate-insulating film; and a source electrode and a drain electrode that are arranged on the channel-forming layer and on opposite sides interposing the gate structure. The donor element concentration at the interface between the gate-insulating film and the GaN layer and at the lattice position on the GaN layer side with respect to the interface is set to be less than or equal to 5.0×1017 cm−3.
Abstract:
A step-flow growth of a group-III nitride single crystal on a silicon single crystal substrate is promoted. A layer of oxide oriented to a axis of silicon single crystal is formed on a surface of a silicon single crystal substrate, and group-III nitride single crystal is crystallized on a surface of the layer of oxide. Thereupon, a axis of the group-III nitride single crystal undergoing crystal growth is oriented to a c-axis of the oxide. When the silicon single crystal substrate is provided with a miscut angle, step-flow growth of the group-III nitride single crystal occurs. By deoxidizing a silicon oxide layer formed at an interface of the silicon single crystal and the oxide, orientation of the oxide is improved.
Abstract:
A step-flow growth of a group-III nitride single crystal on a silicon single crystal substrate is promoted. A layer of oxide oriented to a axis of silicon single crystal is formed on a surface of a silicon single crystal substrate, and group-III nitride single crystal is crystallized on a surface of the layer of oxide. Thereupon, a axis of the group-III nitride single crystal undergoing crystal growth is oriented to a c-axis of the oxide. When the silicon single crystal substrate is provided with a miscut angle, step-flow growth of the group-III nitride single crystal occurs. By deoxidizing a silicon oxide layer formed at an interface of the silicon single crystal and the oxide, orientation of the oxide is improved.