Abstract:
A vehicle-use brake apparatus has a control unit which includes a correcting pressure acquisition section that acquires a flow rate correcting pressure corresponding to a discharge amount of brake fluid discharged by a pump, a command differential pressure acquisition section that acquires a command differential pressure by performing a flow rate correction where the flow rate correcting pressure is subtracted from a target wheel cylinder pressure, and a correction restriction section that performs a correction restriction by which the flow rate correcting pressure is reduced or the flow rate correction is not performed if an actual wheel cylinder pressure is smaller than a target wheel cylinder pressure.
Abstract:
A vehicle-use brake apparatus has a control unit which includes a correcting pressure acquisition section that acquires a flow rate correcting pressure corresponding to a discharge amount of brake fluid discharged by a pump, a command differential pressure acquisition section that acquires a command differential pressure by performing a flow rate correction where the flow rate correcting pressure is subtracted from a target wheel cylinder pressure, and a correction restriction section that performs a correction restriction by which the flow rate correcting pressure is reduced or the flow rate correction is not performed if an actual wheel cylinder pressure is smaller than a target wheel cylinder pressure.
Abstract:
A braking apparatus for a vehicle is provided which includes a hydraulic booster to make wheels of the vehicle produce frictional braking force, a solenoid valve, and a collision avoidance controller. The solenoid valve selectively exerts the hydraulic pressure of brake fluid stored in an accumulator on a spool valve in the booster. When determining that there is a risk of a collision with an obstacle, the collision avoidance controller opens the solenoid valve to achieve emergency braking to minimize the risk of the collision. Basically, emergency braking is achieved by installing the solenoid valve to selectively exert the hydraulic pressure on the spool valve, thus allowing an emergency avoidance braking system to be constructed with a minimum of equipment and facilitating the mountability of the braking apparatus in the vehicles.
Abstract:
The braking device for a vehicle includes a judging portion which judges whether the input piston and the output piston are in contact with or separated from each other and a control portion which outputs the control signal to the pilot pressure generating device so that the hydraulic pressure detected by the hydraulic pressure detecting device becomes a target value corresponding to a vehicle state, when judged that the input piston is not in contact with the output piston and outputs another control signal to the pilot pressure generating device, by which the pilot pressure becomes higher than the pilot pressure generated under a same vehicle state to a vehicle state in a case that the control signal is outputted when the judging portion judges that the input piston is not in contact with the output piston, when judged that the input piston is in contact with the output piston.
Abstract:
The present invention relates to a vehicle brake device which can secure the durability of a linear valve for controlling a servo pressure. The brake ECU of the vehicle brake device sets a reference servo pressure based on the operating amount of a brake pedal when the vehicle is stopped and sets a target servo pressure based on the reference servo pressure during one braking operation. Further, the brake ECU sets the reference servo pressure based on the operating amount of the brake pedal when the servo pressure calculated in response to the operating amount of the brake pedal exceeds the servo pressure change threshold value set with a deviation from the reference servo pressure calculated in response to the brake pedal operating amount.
Abstract:
The brake ECU applies the target braking force by controlling the hydraulic pressure braking force generating device and the regeneration braking force generating device and the brake ECU further controls the advance speed of the output piston so that a drawn-into of a brake operating member can be prevented upon supplying the wheel cylinders from the master cylinder with the brake fluid by advancing the output piston thereby to improve the brake operating feeling of the brake operating member by preventing the brake operating member from being drawn into.
Abstract:
A brake control device for a vehicle which can prevent occurrence of hunting or stepping during braking control operation and includes a pressure increasing or decreasing characteristic selecting portion which selects a pressure increasing characteristic when a target wheel cylinder pressure increases continuously for a predetermined operation judgment period and selects a pressure decreasing characteristic when the target wheel cylinder pressure decreases continuously for a predetermined operation judgment period. The brake control device further includes an output servo pressure setting portion which sets a target servo pressure based on the pressure increasing or decreasing characteristic selected by the pressure increasing or decreasing characteristic selecting portion and a servo pressure generating device which generates a servo pressure based on the target servo pressure.
Abstract:
A brake control device for a vehicle which can prevent occurrence of hunting or stepping during braking control operation and includes a pressure increasing or decreasing characteristic selecting portion which selects a pressure increasing characteristic when a target wheel cylinder pressure increases continuously for a predetermined operation judgment period and selects a pressure decreasing characteristic when the target wheel cylinder pressure decreases continuously for a predetermined operation judgment period. The brake control device further includes an output servo pressure setting portion which sets a target servo pressure based on the pressure increasing or decreasing characteristic selected by the pressure increasing or decreasing characteristic selecting portion and a servo pressure generating device which generates a servo pressure based on the target servo pressure.
Abstract:
A hydraulic brake system is configured such that a pressure of a working fluid from a high-pressure-source device is adjusted by electromagnetic pressure-increase and pressure-decrease linear valves and such that a brake device generates a braking force having a magnitude that depends on the pressure adjusted by the linear valves, wherein the following controls are selectively executable, as a control of the energizing currents supplied to the linear valves, a feedback control based on a difference between an actual braking-force index and a target braking-force index; and a feedforward control based on the target braking-force index executed by placing each valve in a valve equilibrium state, wherein, in the feedforward control, an energizing current is supplied to at least one of the two linear valves, the energizing current being larger than that according to a preset relationship between a braking-force index and an energizing current in the valve equilibrium state.
Abstract:
A brake device for controlling an actual pressure of an output hydraulic pressure outputted from a pressure adjusting device and applying a braking force to a wheel of a vehicle based on the actual pressure of the output hydraulic pressure. The brake device includes an actual pressure judging portion configured to judge whether or not the actual pressure of the output hydraulic pressure is the pressure that is within the range of the dead zone and a adjusting portion configured to execute a target pressure adjustment for adjusting a target pressure of the output hydraulic pressure to approximate a side of the actual pressure of the output hydraulic pressure.