Abstract:
Polycrystalline diamond bodies having an annular region of diamond grains and a core region of diamond grains and methods of making the same are disclosed. In one embodiment, a polycrystalline diamond body includes an annular region of inter-bonded diamond grains having a first characteristic property and a core region of inter-bonded diamond grains bonded to the annular region and having a second characteristic property that differs from the first characteristic property. The annular region decreases in thickness from a perimeter surface of the polycrystalline diamond body towards a centerline axis.
Abstract:
Polycrystalline diamond bodies having an annular region of diamond grains and a core region of diamond grains and methods of making the same are disclosed. In one embodiment, a polycrystalline diamond body includes an annular region of inter-bonded diamond grains having a first characteristic property and a core region of inter-bonded diamond grains bonded to the annular region and having a second characteristic property that differs from the first characteristic property. The annular region decreases in thickness from a perimeter surface of the polycrystalline diamond body towards a centerline axis.
Abstract:
Cutting elements having accelerated leaching rates and methods of making the same are disclosed herein. In one embodiment, a method of forming a cutting element includes assembling a reaction cell having diamond particles, a non-catalyst material, a catalyst material, and a substrate within a refractory metal container, where the non-catalyst material is generally immiscible in the catalyst material at a sintering temperature and pressure. The method also includes subjecting the reaction cell and its contents to a high pressure high temperature sintering process to form a polycrystalline diamond body that is attached to the substrate. The method further includes contacting at least a portion of the polycrystalline diamond body with a leaching agent to remove catalyst material and non-catalyst material from the diamond body, where a leaching rate of the catalyst material and the non-catalyst material exceeds a conventional leaching rate profile by at least about 30%.
Abstract:
A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a dopant as evaluated prior to a high pressure/high temperature process. The dopant may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
Abstract:
Polycrystalline diamond compacts having interstitial diamonds and methods of forming polycrystalline diamond compact shaving interstitial diamonds with a quench cycle are described herein. In one embodiment, a polycrystalline diamond compact includes a substrate and a polycrystalline diamond body attached to the substrate. The polycrystalline diamond body includes a plurality of inter-bonded diamond grains that are attached to one another in an interconnected network of diamond grains and interstitial pockets between the inter-bonded diamond grains, and a plurality of interstitial diamond grains that are positioned in the interstitial pockets. Each of the plurality of interstitial diamond grains are attached to a single diamond grain of the interconnected network of diamond grains or other interstitial diamond grains.
Abstract:
Polycrystalline diamond compacts having parting compound within the interstitial volumes are disclosed herein. In one embodiment, a polycrystalline diamond compact includes a polycrystalline diamond body having a plurality of diamond grains bonded together in diamond-to-diamond bonds, interstitial volumes positioned between the adjacent diamond grains, and a parting compound positioned in at least a portion of the interstitial volumes of the polycrystalline diamond body.
Abstract:
A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a dopant as evaluated prior to a high pressure/high temperature process. The dopant may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
Abstract:
Provided are bearing assemblies including one or more substrate assemblies, such as thrust bearing assemblies. The substrate assemblies include a bearing element fixed to a substrate. The bearing elements are formed from a thermally stable material such as a ceramic-bonded diamond composite. Methods for manufacturing the bearing assemblies are also provided.
Abstract:
A polycrystalline diamond compact cutter for a tool includes a substrate of cemented carbide and a volume of polycrystalline diamond bonded to the substrate. At least one chamfer extends along an outer circumference of the volume of polycrystalline diamond. A textured surface is disposed on at least the at least one chamfer. The textured surface provides a termination point for crack formation, an increased surface area for heat transfer, and decreases chipping of the volume of polycrystalline diamond.
Abstract:
Polycrystalline diamond compacts having interstitial diamonds and methods of forming polycrystalline diamond compact shaving interstitial diamonds with a quench cycle are described herein. In one embodiment, a polycrystalline diamond compact includes a substrate and a polycrystalline diamond body attached to the substrate. The polycrystalline diamond body includes a plurality of inter-bonded diamond grains that are attached to one another in an interconnected network of diamond grains and interstitial pockets between the inter-bonded diamond grains, and a plurality of interstitial diamond grains that are positioned in the interstitial pockets. Each of the plurality of interstitial diamond grains are attached to a single diamond grain of the interconnected network of diamond grains or other interstitial diamond grains.