Abstract:
The invention is a method of forming a cadmium sulfide based buffer on a copper chalcogenide based absorber in making a photovoltaic cell. The buffer is sputtered at relatively high pressures. The resulting cell has good efficiency and according to one embodiment is characterized by a narrow interface between the absorber and buffer layers. The buffer is further characterized according to a second embodiment by a relatively high oxygen content.
Abstract:
A photovoltaic system that converts incident light into electrical energy that includes a light trapping optical module having a light randomizing dielectric slab with a first surface and a second surface, a first cell adjacent to the first surface of the slab that has a bandgap of lower energy than the energy of absorption onset of the dielectric slab, at least one filter element in optical contact with the second surface of the dielectric slab, and a sub-cell array with a plurality of photovoltaic sub-cells, wherein at least one of the sub-cells has a first surface that is in optical contact with the at least one filter element.
Abstract:
The present invention is premised upon an improved photovoltaic device (“PV device”) more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry or any combination thereof.
Abstract:
The present invention provides photovoltaic devices that comprise multiple bandgap cell arrays in combination with spectrum splitting optics. The spectrum splitting optics include one or more optical spectrum splitting modules that include two or more optical splitting, diffractive elements that are optically in series to successively and diffractively split incident light into segments or slices that are independently directed onto different photovoltaic cell(s) of the array having appropriate bandgap characteristics.
Abstract:
The present invention is directed to a method of producing two or more thin-film-based interconnected photovoltaic cells (100) comprising the steps of: a) providing a photovoltaic article comprising: a flexible conductive substrate, at least one photoelectrically active layer, and a top transparent conducting layer; b) forming one or more first channels (140) through the flexible conductive substrate to expose a portion of the photoelectrical]?—active layer; e) applying an insulating segment to the conductive substrate and spanning the one or more first-channel; d) forming one or more second channels off set from the one or more first channels—‘through—the photoelectrically active layer to expose a conductive surface of the flexible conductive substrate; I) forming one or more third channels (170) off set from both the first channels and the second channels, through the top transparent conducting layer and to the photoelectrically active layer: and g) applying an electrically conductive material (180) above the top transparent conducting layer and in the second channels, thus producing two or more Interconnected photovoltaic cells.
Abstract:
The invention is a method of forming a cadmium sulfide based buffer on a copper chalcogenide based absorber in making a photovoltaic cell. The buffer is sputtered at relatively high pressures. The resulting cell has good efficiency and according to one embodiment is characterized by a narrow interface between the absorber and buffer layers. The buffer is further characterized according to a second embodiment by a relatively high oxygen content.
Abstract:
An article of manufacture includes a PV element having a conductive layer positioned on a light-incident side of the PV element, a conductor electrically coupled to the conductive layer, and a conductive particle matrix interposed between the conductor and the conductive layer at a number of positions on the conductive layer. The article further includes a carrier film positioned on the light-incident side of the PV element, and a non-conductive adhesive, where the adhesive and the conductor are positioned between the carrier film and the conductive layer.
Abstract:
The present invention is premised upon a method of producing two or more thin-film-based interconnected photovoltaic cells comprising the steps of: a) providing a photovoltaic article comprising: a flexible conductive substrate, at least on photo-electrically active layer, a top transparent conducting layer, and a carrier structure disposed above the tap transparent layer; b) forming one or more first channels through the layers of the photovoltaic article; c) applying an insulating layer to the conductive substrate and spanning the one or more first channel; d) removing the carrier structure; e) forming an addition to the one or more first channels through the insulating layer; f) forming one or more second channels off set from the one or mom first channels through the insulating layer to expose a conductive surface of the flexible conductive substrate; g) applying a first electrically conductive material to the conductive surface of the flexible conductive substrate via the one or more; second channels; h) applying an electrically conductive film to the first insulating layer, wherein the film is hi electrical communication with the flexible conductive substrate via the first electrically conductive material; J) applying a second electrically conductive material above the top transparent conducting layer and through the one or more first channels, electrically connecting the layers of the photovoltaic article from step b to the electrically conductive
Abstract:
The invention relates to a photovoltaic article comprising a plurality of photovoltaic cells having first (22) and second (24) electrical connector segments in contact with the top side (18) of a first cell (10) and the backside (16) of a second adjacent cell (12). The materials used to form the electrical connector segments are selected to minimize corrosion, maximize contact area, and lower contact resistance over the lifetime of the article.
Abstract:
A composition comprising a phase separated block copolymer and an inorganic dielectric nanoparticle, wherein the nanoparticle is dispersed in the copolymer and is present primarily in one phase. For example, a Ti02 nanocomposite can be created via the in situ formation of Ti02 within a silane-grafted OBC. Taking advantage of the phase morphology of the OBC and the differential swelling of the hard and soft segments, due to their inherent crystallinity, enables the selective incorporation of Ti02 nanoparticles into the soft segments of the OBC.