摘要:
An insulation layer may be formed on an object having a contact region. The insulation layer may be partially etched to form an opening exposing the contact region. A material layer including silicon and oxygen may be formed on the exposed contact region. A metal layer may be formed on the material layer including silicon and oxygen. The material layer including silicon and oxygen may be reacted with the metal layer to form a metal oxide silicide layer at least on the contact region. A conductive layer may be formed on the metal oxide silicide layer to fill up the opening.
摘要:
An insulation layer may be formed on an object having a contact region. The insulation layer may be partially etched to form an opening exposing the contact region. A material layer including silicon and oxygen may be formed on the exposed contact region. A metal layer may be formed on the material layer including silicon and oxygen. The material layer including silicon and oxygen may be reacted with the metal layer to form a metal oxide silicide layer at least on the contact region. A conductive layer may be formed on the metal oxide silicide layer to fill up the opening.
摘要:
A method of fabricating a semiconductor device is provided. The method includes forming a mold for forming a storage electrode, forming sacrificial spacers at side walls of openings in the mold, forming a conductive film for a storage electrode along the inside of the openings, removing the mold by a wet etching process, removing the sacrificial spacers by a dry etching process, and sequentially forming a dielectric film and an upper electrode on the storage electrode.
摘要:
In a method of manufacturing a semiconductor device such as a SONOS type semiconductor device, a trench is formed on a substrate. An isolation layer protruding from the substrate is formed to fill the trench. After a first layer is formed on the substrate, a preliminary second layer pattern is formed on the first layer. The preliminary second layer pattern has an upper face substantially lower than or substantially equal to an upper face of the isolation layer. A third layer is formed on the preliminary second layer and the isolation layer. A fourth layer is formed on the third layer. The fourth layer, the third layer, the preliminary second layer pattern and the first layer are partially etched to form a gate structure on the substrate. Source/drain regions are formed at portions of the substrate adjacent to the gate structure.
摘要:
In a method of manufacturing a semiconductor device such as a SONOS type semiconductor device, a trench is formed on a substrate. An isolation layer protruding from the substrate is formed to fill the trench. After a first layer is formed on the substrate, a preliminary second layer pattern is formed on the first layer. The preliminary second layer pattern has an upper face substantially lower than or substantially equal to an upper face of the isolation layer. A third layer is formed on the preliminary second layer and the isolation layer. A fourth layer is formed on the third layer. The fourth layer, the third layer, the preliminary second layer pattern and the first layer are partially etched to form a gate structure on the substrate. Source/drain regions are formed at portions of the substrate adjacent to the gate structure.
摘要:
A method of removing a photoresist may include permeating supercritical carbon dioxide into the photoresist on a substrate having a conductive structure including a metal. The photoresist permeating the supercritical carbon dioxide may be easily removable. The photoresist permeating the supercritical carbon dioxide may be removed using a photoresist cleaning solution from the substrate. The photoresist cleaning solution may include an alkanolamine solution of about 8 percent by weight to about 20 percent by weight, a polar organic solution of about 25 percent by weight to about 40 percent by weight, a reducing agent of about 0.5 percent by weight to about 3 percent by weight with the remainder being water. The photoresist may be easily removed without damaging the conductive structure in a plasma process.
摘要:
A method of removing a photoresist may include permeating supercritical carbon dioxide into the photoresist on a substrate having a conductive structure including a metal. The photoresist permeating the supercritical carbon dioxide may be easily removable. The photoresist permeating the supercritical carbon dioxide may be removed using a photoresist cleaning solution from the substrate. The photoresist cleaning solution may include an alkanolamine solution of about 8 percent by weight to about 20 percent by weight, a polar organic solution of about 25 percent by weight to about 40 percent by weight, a reducing agent of about 0.5 percent by weight to about 3 percent by weight with the remainder being water. The photoresist may be easily removed without damaging the conductive structure in a plasma process.
摘要:
Provided herein are etching, cleaning and drying methods using a supercritical fluid, and a chamber system for conducting the same. The etching method includes etching the material layer using a supercritical carbon dioxide in which an etching chemical is dissolved, and removing an etching by-product created from a reaction between the material layer and the etching chemical using a supercritical carbon dioxide in which a cleaning chemical is dissolved. Methods of manufacturing a semiconductor device are also provided.
摘要:
Provided herein are etching, cleaning and drying methods using a supercritical fluid, and a chamber system for conducting the same. The etching method includes etching the material layer using a supercritical carbon dioxide in which an etching chemical is dissolved, and removing an etching by-product created from a reaction between the material layer and the etching chemical using a supercritical carbon dioxide in which a cleaning chemical is dissolved. Methods of manufacturing a semiconductor device are also provided.
摘要:
Provided herein are etching, cleaning and drying methods using a supercritical fluid, and a chamber system for conducting the same. The etching method includes etching the material layer using a supercritical carbon dioxide in which an etching chemical is dissolved, and removing an etching by-product created from a reaction between the material layer and the etching chemical using a supercritical carbon dioxide in which a cleaning chemical is dissolved. Methods of manufacturing a semiconductor device are also provided.