Abstract:
The invention provides a new process for patterning TPE membranes for use in the design and fabrication of 3D microfluidic devices. The process involves patterning a TPE material without permitting the highest features of the mold to come into contact with the counter-plate, whereby adhesion between the TPE and the mold or counter-plate during demolding results directly in removal of the excess layer from the TPE membrane to produce well formed micrometric-sized open-through holes in the TPE membrane. The process permits rapid, reliable and efficient patterning of densely packed and arbitrarily placed micrometric open-through holes and channels of high aspect-ratio and any shape or wall profile in thin TPE membranes.
Abstract:
The invention provides a new process for patterning TPE membranes for use in the design and fabrication of 3D microfluidic devices. The process involves patterning a TPE material without permitting the highest features of the mold to come into contact with the counter-plate, whereby adhesion between the TPE and the mold or counter-plate during demolding results directly in removal of the excess layer from the TPE membrane to produce well formed micrometric-sized open-through holes in the TPE membrane. The process permits rapid, reliable and efficient patterning of densely packed and arbitrarily placed micrometric open-through holes and channels of high aspect-ratio and any shape or wall profile in thin TPE membranes.
Abstract:
A composition made of at least 60 wt. % of a thermoplastic elastomer resin and additives that are solid at least from 0-50° C., that has a Shore A hardness that is less than about 50 bears a patterned surface, the pattern comprising at least one microfluidic channel having a cross-sectional dimension smaller than 100 microns is a substrate for forming a microfluidic device. The chief advantages of such compositions are: its ability to bond in a sealing manner to smooth surfaces of many different compositions, its ease of manufacture and microstructure patterning, and its general impermeability to liquids.
Abstract:
A microfluidic valve operable to semi-permanently close a channel of a microfluidic device defined between a thermoplastic elastomer (TPE) film and a substrate operates employs a surface contact bond between the TPE and a wall of the channel. Thermomechanical release of the valve, tristate functionality, and repeated semi-permanent closure and release are demonstrated.
Abstract:
A composition made of at least 60 wt. % of a thermoplastic elastomer resin and additives that are solid at least from 0-50° C., that has a Shore A hardness that is less than about 50 bears a patterned surface, the pattern comprising at least one microfluidic channel having a cross-sectional dimension smaller than 100 microns is a substrate for forming a microfluidic device. The chief advantages of such compositions are: its ability to bond in a sealing manner to smooth surfaces of many different compositions, its ease of manufacture and microstructure patterning, and its general impermeability to liquids.
Abstract:
A microfluidic valve operable to semi-permanently close a channel of a microfluidic device defined between a thermoplastic elastomer (TPE) film and a substrate operates employs a surface contact bond between the TPE and a wall of the channel. Thermomechanical release of the valve, tristate functionality, and repeated semi-permanent closure and release are demonstrated.
Abstract:
A microfluidic system for processing a sample includes a microfluidic CD in the form a rotatable disc, the disc containing a plurality of separate lysis chambers therein. A magnetic lysis blade and lysis beads are disposed in each of the lysis chambers and a plurality of stationary magnets are disposed adjacent to and separate from the microfluidic CD. The stationary magnets are configured to magnetically interact with each of the magnetic lysis blades upon rotation of the microfluidic CD. Each lysis chamber may have its own separate sample inlet port or, alternatively, the lysis chambers may be connected to one another with a single inlet port coupled to one of the lysis chambers. Downstream processing may include nucleic acid amplification using thermoelectric heating as well as detection using a nucleic acid microarray.
Abstract:
A centrifugal microfluidic device is provided having a microfluidic circuit, a fluid reservoir for providing fluid in the microfluidic circuit, a hydrodynamic resistance element in fluid communication with the reservoir for controlling rate of flow of a fluid out of the reservoir, and a siphoned chamber in fluid communication with the hydrodynamic resistance element and the microfluidic circuit for receiving fluid from the hydrodynamic resistance element and for delaying and metering of the fluid into the microfluidic circuit. The microfluidic device is useful for performing a biological assay. Operation of the device is completely independent on the liquid-solid contact angle and wetting properties of the liquids on the solid material of the platform, and the device does not need a carefully controlled rotation protocol.
Abstract:
A microfluidic system for processing a sample includes a microfluidic CD in the form a rotatable disc, the disc containing a plurality of separate lysis chambers therein. A magnetic lysis blade and lysis beads are disposed in each of the lysis chambers and a plurality of stationary magnets are disposed adjacent to and separate from the microfluidic CD. The stationary magnets are configured to magnetically interact with each of the magnetic lysis blades upon rotation of the microfluidic CD. Each lysis chamber may have its own separate sample inlet port or, alternatively, the lysis chambers may be connected to one another with a single inlet port coupled to one of the lysis chambers. Downstream processing may include nucleic acid amplification using thermoelectric heating as well as detection using a nucleic acid microarray.