摘要:
A plasma reactor operable over a very wide process window of pressure, source power and bias power includes a resonant circuit consisting of an overhead electrode having a first impedance, a wafer support pedestal having a second impedance and a bulk plasma having a third impedance and generally lying in a process zone between the overhead electrode and the wafer support pedestal, the magnitudes of the impedances of the overhead electrode and the wafer support pedestal being within an order of magnitude of one another, the resonant circuit having a resonant frequency determined by the first, second and third impedances.
摘要:
An RF power applicator of the reactor includes inner and outer conductive radial spokes. The set of inner conductive spokes extends radially outwardly from and is electrically connected to the conductive post toward the conductive side wall. The set of outer conductive spokes extends radially inwardly toward the conductive post from and is electrically connected to the conductive side wall. In this way, the inner and outer sets of conductive spokes are electrically connected together, the combination of the inner and outer set of spokes with the conductive enclosure having a fundamental resonant frequency inversely proportional to the height of the conductive enclosure and the lengths of the inner and outer set of conductive spokes. An RF source power generator is coupled across the RF power applicator and has an RF frequency corresponding to the fundamental resonant frequency.
摘要:
In a plasma reactor having an electrostatic chuck, wafer voltage is determined from RF measurements at the bias input using previously determined constants based upon transmission line properties of the bias input, and this wafer voltage is used to accurately control the DC wafer clamping voltage.
摘要:
A method of transferring heat from or to a workpiece support in an RF coupled plasma reactor includes placing coolant in an internal flow channel that is located inside the workpiece support and transferring heat from or to the coolant by circulating the coolant through a refrigeration loop in which the internal flow channel of the workpiece support constitutes an evaporator of the refrigeration loop. The method further includes maintaining thermal conditions of the coolant inside the evaporator within a range in which heat exchange between the workpiece support and the coolant is primarily or exclusively through the latent heat of vaporization of the coolant.
摘要:
In some implementations, a method is provided in a plasma processing chamber for stabilizing etch-rate distributions during a process transition from one process step to another process step. The method includes performing a pre-transition compensation of at least one other process parameter so as to avoid unstable plasma states by inhibiting formation of a parasitic plasma during the process transition. In some implementations, a method is provided for processing a workpiece in plasma processing chamber, which includes inhibiting deviations from an expected etch-rate distribution by avoiding unstable plasma states during a process transition from one process step to another process step.
摘要:
A method of processing a workpiece in a plasma reactor having an electrostatic chuck for supporting the workpiece within a reactor chamber, the method including circulating a coolant through a refrigeration loop that includes an evaporator inside the electrostatic chuck, while pressurizing a workpiece-to-chuck interface with a thermally conductive gas, sensing conditions in the chamber including temperature near the workpiece and simulating heat flow through the electrostatic chuck in a thermal model of the chuck based upon the conditions. The method further includes obtaining the next scheduled change in RF heat load on the workpiece and using the model to estimate a change in thermal conditions of the coolant in the evaporator that would hold the temperature nearly constant by compensating for the next scheduled change in RF heat load, and making the change in thermal conditions of the coolant in the evaporator prior to the time of the next scheduled change by a head start related to the thermal propagation delay through the electrostatic chuck.
摘要:
A plasma reactor having a reactor chamber and an electrostatic chuck with a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck and a memory storing a schedule of changes in RF power or wafer temperature. The reactor further includes a thermal model capable of simulating heat transfer between the evaporator and the surface based upon measurements from the temperature sensor, and a control processor coupled to the thermal model and to the memory and governing the backside gas pressure source in response to a prediction from the model of a change in the selected pressure that would compensate for the next scheduled change in RF power or implement the next scheduled change in wafer temperature.
摘要:
In a plasma reactor having an electrostatic chuck with an electrostatic chuck top surface for supporting a workpiece, thermal transfer medium flow channels in the interior of the electrostatic chuck, a method for controlling temperature of the workpiece during plasma processing includes circulating thermal transfer medium through the thermal transfer medium flow passages and supplying a thermally conductive gas between the workpiece and the electrostatic chuck top surface, and changing thermal transfer medium thermal conditions of thermal transfer medium flowing in the thermal transfer medium flow channels so as to change the temperature of the electrostatic chuck at a first rate limited by the thermal mass of the electrostatic chuck. The method further includes changing the backside gas pressure of the thermally conductive gas so as to change the temperature of the workpiece at a second rate faster than the first rate.
摘要:
A plasma reactor has a dual frequency plasma RF bias power supply furnishing RF bias power comprising first and second frequency components, f(1), f(2), respectively, and an RF power path having an input end coupled to the plasma RF bias power supply and an output end coupled to the wafer support pedestal, and sensor circuits providing measurement signals representing first and second frequency components of a measured voltage and first and second frequency components of a measured current near the input end of the RF power path. The reactor further includes a processor for providing first and second frequency components of a wafer voltage signal as, respectively, a first sum of the first frequency components of the measured voltage and measured current multiplied by first and second coefficients respectively, and a second sum of the second frequency components of the measured voltage and measured current multiplied by third and fourth coefficients, respectively. A processor produces a D.C. wafer voltage by combining D.C. components of the first and second frequency components of the wafer voltage with an intermodulation correction factor that is the product of the D.C. components of the first and second components of the wafer voltage raised to a selected power and multiplied by a selected coefficient.
摘要:
A plasma reactor for processing a workpiece includes a reactor chamber, an electrostatic chuck within the chamber for supporting a workpiece, an RF plasma bias power generator coupled to apply RF power to the electrostatic chuck and a refrigeration loop having an evaporator inside the electrostatic chuck with a refrigerant inlet and a refrigerant outlet. Preferably, the evaporator includes a meandering passageway distributed in a plane beneath a top surface of the electrostatic chuck. Preferably, refrigerant within the evaporator is apportioned between a vapor phase and a liquid phase. As a result, heat transfer between the electrostatic chuck and the refrigerant within the evaporator is a constant-temperature process. This feature improves uniformity of temperature distribution across a diameter of the electrostatic chuck.