摘要:
In one embodiment, the present invention relates to a method for producing polymer nanostructures, the method comprising the steps of: forming at least one nanostructure substrate, web, membrane or mat; exposing the at least one nanostructure substrate, web, membrane or mat to at least one monomer composition, where the at least one monomer composition is in a vapor phase and the at least one monomer composition is deposited on the surface of and/or within the at least one nanostructure substrate, web, membrane or mat; and subjecting the at least one exposed nanostructure substrate, web, membrane or mat to conditions suitable to polymerize the at least one monomer composition, thereby yielding polymer nanostructures where the polymer nanostructures are formed on and/or in the nanostructure substrate, web, membrane or mat.
摘要:
The present invention relates to methods and apparatus for removing water and/or water-based compounds from organic liquids/fluids. In one embodiment, the present invention relates to methods and apparatus that utilize fibrous media that contains, is impregnated, or is formed from at least one super absorbent compound, where the fibrous media is formed from nanofibers.
摘要:
The present invention provides a fibrous catalyst-immobilization system that can be employed for immobilizing catalysts that are subject to fluid flow within a chemical production process. The fibrous systems can be synthesized using electrospinning and the catalysts are secured in the fibers during the electrospinning process.
摘要:
An expandable balloon for use in angioplasty procedures comprises a balloon having an outer surface layer, the outer surface layer being made from electrospun nanofibers and incorporating at least one pharmaceutically active substance, such as nitric oxide (NO). The outer surface layer may be formed on a separate flexible tubular member or sock, which is slipped over the balloon. An acidic agent, such as ascorbic acid, may be included in the balloon for enhancing NO release. A method of treating cell disorders in tubular structures of a living being comprises the steps of placing a coated balloon at a treatment site within the tubular structures, expanding the balloon at the treatment site, and releasing the pharmaceutically active substance at the treatment site. Optionally, a stent may be crimped onto the balloon prior to insertion of the balloon and stent into the tubular structures of the living being.
摘要:
A fibrous assembly is provided for performing site-specific chemistry. In general the present invention provides a fibrous assembly comprising a first fiber that sequesters a first reactive component; and a second fiber that sequesters a second reactive component, wherein at least the first or second fiber releases its reactive component when the fiber is in the presence of a releasing agent, and wherein when the at least first or second fiber releases its reactive component, the first and second reactive components react with each other to form a reaction product Related methods of manufacture and use are also provided.
摘要:
The present invention is generally directed to a liquid entrapping device having the capacity to absorb liquids. More particularly, the present invention is directed to a liquid entrapping device comprising an absorbent component, hydrophilic elastomeric fibrous component in fluid communication therewith, and optionally an adhesive component. The present invention is also directed to a liquid entrapping device having the capacity to absorb liquids while maintaining a suitable degree of mechanical strength. Furthermore, the present invention is generally directed to methods for making and using the foregoing devices and materials.
摘要:
The present invention relates to structures that contain one or more fiber and/or nanofiber structures where such structures can be formed on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In one embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In another embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.) where such fibers and/or structures are designed to sequester, carry and/or encapsulate one or more substances. In still another embodiment, the present invention relates to structures that contain one or more fiber and/or nanofiber structures on asperities where the nanofiber and/or fiber structures are designed to sequester, carry and/or encapsulate one or more substances.
摘要:
A medical device, such as a guide wire, an embolization device, or a guide shaft for a micro catheter, comprises a solid and/or non-expandable core member made from e.g. metal, such as tantalum, and an outer surface layer, which is formed by electrospun nanofibers. The outer surface layer may incorporate a pharmaceutically active substance, such as a nitric oxide (NO) donor for release in the vascular or neurovascular system of a living being. The NO donor may be incorporated in a polymer, such as a polymeric linear poly(ethylenimine) diazeniumdiolate.
摘要:
A non-woven fiber assembly comprises one or more fibers containing an adhesive component, an elastomeric component, and a hydrophilic component. A method of making a non-woven fiber assembly comprises the steps of providing one or more fiber-forming materials comprising an adhesive component, an elastomeric component, and a hydrophilic component, and forming said one or more fiber-forming materials into at least one fiber. A method of treating a patient comprises applying a medical dressing comprising the fiber assembly of the present invention to a patient. An apparatus (10) for forming a non-woven fiber assembly comprises a plurality of reservoirs (12, 16, 20) for containing more than one type of fiber-forming material, a plurality of valves (14, 18, 22), each independently in communication with a reservoir, and a fiber-forming device (28) selected from the group consisting of a spinnerette, a NGJ nozzle, and an electrospinning device, in communication with the valves.
摘要:
The present invention relates to structures that contain one or more fiber and/or nanofiber structures where such structures can be formed on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In one embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In another embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.) where such fibers and/or structures are designed to sequester, carry and/or encapsulate one or more substances. In still another embodiment, the present invention relates to structures that contain one or more fiber and/or nanofiber structures on asperities where the nanofiber and/or fiber structures are designed to sequester, carry and/or encapsulate one or more substances.