摘要:
An integrated getter structure and a method for its formation and installation in a circuit module enclosure (24). The integrated structure includes a hydrogen getter structure (10) and selected quantities of a material (20) that is formulated to provide both a particle getter function and an RF absorber function. In one embodiment, the material (20) is placed in discrete quantities over the hydrogen getter structure (10). In another embodiment, the hydrogen getter structure (10) is formed over a sheet of the material (20) and is provided with apertures (30) to expose the material (20).
摘要:
An integrated getter structure and a method for its formation and installation in a circuit module enclosure (24). The integrated structure includes a hydrogen getter structure (10) and selected quantities of a material (20) that is formulated to provide both a particle getter function and an RF absorber function. In one embodiment, the material (20) is placed in discrete quantities over the hydrogen getter structure (10). In another embodiment, the hydrogen getter structure (10) is formed over a sheet of the material (20) and is provided with apertures (30) to expose the material (20).
摘要:
Ultra-high speed semiconductors that are usually very thin and therefore very fragile still require connection to a circuit board and a heat transfer pathway. Ultra-high speed circuits and semiconductor devices are provided with a carrier plate formed on the backside of a wafer or substrate by a variety of deposition methods. The carrier plate is a series of metal layers, each being selected to enable the attachment of a relatively thick copper carrier plate to the backside of the substrate or wafer.
摘要:
Ultra-high speed semiconductors that are usually very thin and therefore very fragile still require connection to a circuit board and a heat transfer pathway. Ultra-high speed circuits and semiconductor devices are provided with a carrier plate formed on the backside of a wafer or substrate by a variety of deposition methods. The carrier plate is a series of metal layers, each being selected to enable the attachment of a relatively thick copper carrier plate to the backside of the substrate or wafer.
摘要:
Protection against x-ray radiation is provided by a thin layer of a zinc-based alloy. An electronics component housing and lid are made to include a base of a lightweight alloy, a thin coating of the zinc-based alloy and an exterior finish metal layer. The zinc-based alloy provides excellent radiation protection and other advantages, without a significant weight penalty.
摘要:
A resonant photodetector assembly (10) which uses multiple reflections of light within a photodetector (20) to convert input light into an electrical signal. The photodetector (20) includes a combination of generally planar semiconductor layers including a photodetector active layer (36) where light is converted into an electrical output. The photodetector (20) further includes a first outer electrical contact layer (34) and a second outer electrical contact layer (42). A waveguide (22) is positioned on the photodetector (20) and has a waveguide active layer (26) positioned between a pair of waveguide cladding layers (24, 28), a first end (30) for receiving input light and a second end (50) for reflecting the light. A reflector (32) is positioned on the second end (50) of the waveguide (22) at an angle relative to a line parallel to the substrate (14), where the reflector (32) reflects the light received by the first end (30) of the waveguide active layer (26) towards the photodetector (20). A reflector (38) is positioned on the second outer layer (42) of the photodetector (20) and provides a reflective surface for reflecting the light within the photodetector (20).
摘要:
Disclosed are hydrogen gettering structure (11) and use of such structure and methods of forming such structure. The hydrogen gettering structure (11) includes a titanium member (1) and a silver-doped palladium layer (3) on the titanium member (1), the silver assisting palladium to increase the hydrogen gettering. The silver-doped palladium can be deposited on the titanium member by sputtering. The hydrogen gettering structure (11) can be attached to a semiconductor module component (7) and incorporated in a semiconductor module (10) to increase hydrogen gettering, or can be included in other structure (e.g., nuclear reactor structure) where absorption or gettering of hydrogen is necessary or desired.
摘要:
A method for fabricating a monolithic micro-optical component. The construction of the micro-optical components is accomplished by using standard semiconductor fabrication techniques. The method comprises the steps of depositing an etch stop layer (44) onto a semiconductor substrate (42); depositing an optical component layer (46) onto the etch stop layer (44); coating the entire surface of the optical component layer with a photoresist material; applying a photoresist mask (50) to the photoresist material on the optical component layer (46); selectively etching away the optical component layer (46) to form at least one optical column (52); forming a pedestal (54) for each of the optical columns (52) by selectively etching away the etch stop layer (44); and finally polishing each of the optical columns (52), thereby forming monolithic optical components (56). The method may optionally include the step of removing the photoresist mask from each of the optical columns prior to polishing the optical columns, as well as the step of depositing an antireflectivity coating onto each of the optical components.
摘要:
The invention relates to an optical integrated circuit microbench system for accurately aligning optical fiber and waveguides to efficiently couple energy between optical devices. This is accomplished by using the anisotropic etch characteristics of III-V semiconductor materials in two orthogonal directions. One etch direction serves to provide a channel for precise fiber-positioning; the other direction, which is orthogonal provides a reflecting surface for directing the optical energy onto optical devices.
摘要:
An interconnected apparatus for producing a low loss, reproducible electrical interconnection between a semiconductor device and a substrate includes a rod and rod receptor. The rod, generally cylindrically shaped, is attached to the semiconductor device and includes an outer circumferential wall which comes into contact with the rod receptor during a bonding process. A lip portion is formed on one end of the rod receptor for interlocking engagement with the rod. The rod receptor is plated on the substrate and includes a generally circularly shaped body which forms a centrally disposed well for receiving the rod. A lip portion is formed on one end or mouth of the rod receptor for interlocking engagement with the rod. When the rod and corresponding receptor are aligned and brought together, the rod deforms and interlocks with its corresponding rod receptor. A thermo-compression bonding process is utilized to bond the rod to the rod receptor, thereby producing a strong interlocking bond.