Abstract:
A system may receive a bandwidth allocation policy, may allocate first bandwidth to a first set of queues based on the bandwidth allocation policy, and may allocate second bandwidth to a second set of queues based on the bandwidth allocation policy. The system may identify a first characteristic associated with packets, and may store information associated with the packets in first queues based on the first characteristic. The system may identify a second characteristic associated with the packets, and may store information associated with the packets, from the first queues, in second queues, based on the second characteristic, the allocated first bandwidth, and the bandwidth allocation policy. The system may store information associated with the packets, from the second queues, in an output queue based on the allocated second bandwidth and the bandwidth allocation policy, and may service the packets from the output queue for delivery to a device.
Abstract:
A user equipment (UE) provides for display, to a user, information identifying available over-the-top (OTT) services provided via voice-over-Long-Term Evolution (VoLTE), and receives, from the user, a selection of a particular OTT service of the available OTT services. The UE receives, from the user, information identifying a selected contact associated with the particular OTT service, and determines whether a particular UE associated with the selected contact is a VoLTE capable device or a non-VoLTE capable device. The UE provides a call to the particular UE, via a LTE network and an Internet protocol (IP) Multimedia Subsystem (IMS) network, when the particular UE is a VoLTE capable device.
Abstract:
A system receives traffic information that identifies an application installed on a user device and resources being used to process traffic associated with the application; obtains, as a result of receiving the traffic information, a policy that identifies a particular amount of resources authorized for processing particular traffic associated with the application; determines that an amount of the resources being used to process the traffic exceeds the particular amount of resources authorized for processing the particular traffic; and transmits a notification to cause the traffic to be controlled by a base station to reduce the amount of the resources to a level less than the particular amount of resources.
Abstract:
A device is configured to receive packet timing data, from multiple network devices, for subscriber application traffic over an Internet Protocol (IP) wireless access network and to calculate, based on the packet timing data, timing latencies for a particular subscriber flow. The device is configured to retrieve Quality of Service (QoS) timing specifications for the particular subscriber flow and to determine when the calculated timing latencies for the particular subscriber flow fail to meet the QoS timing specifications for the particular subscriber flow. The device is configured to identify one or more of the network devices that are causing the particular subscriber flow to fail to meet the QoS timing specifications and to instruct the one or more of the network devices to modify QoS parameters for the particular subscriber flow to improve timing latency for the particular subscriber flow.
Abstract:
A device may receive a request from a mobile device to create a socket connection between the mobile device and the device. The request may be associated with linking information that links the socket connection with a previous socket connection with the mobile device. The request may be received from the mobile device after the mobile device disconnects from a first wireless local area network and reconnects to a second wireless local area network. The device may identify, based on the linking information, a socket connection between the device and a server device, the socket connection between the device and the server device having been created when the mobile device was connected to the first wireless local area network. The device may relay communications between the mobile device and the server device, using the socket connections.
Abstract:
A system may be configured to receive first information regarding a location service dead zone; receive second information regarding a location of a user device; identify, based on the first information and the second information, that the user device is within the location service dead zone at a particular time; compute a location of the user device, within the location service dead zone, at the particular time, based on at least one of the second information regarding the location of the user device, history data associated with the user device, or history data associated with one or more other user devices; and store or output information regarding the computed location of the user device at the particular time.
Abstract:
A device is configured to receive packet timing data, from multiple network devices, for subscriber application traffic over an Internet Protocol (IP) wireless access network and to calculate, based on the packet timing data, timing latencies for a particular subscriber flow. The device is configured to retrieve Quality of Service (QoS) timing specifications for the particular subscriber flow and to determine when the calculated timing latencies for the particular subscriber flow fail to meet the QoS timing specifications for the particular subscriber flow. The device is configured to identify one or more of the network devices that are causing the particular subscriber flow to fail to meet the QoS timing specifications and to instruct the one or more of the network devices to modify QoS parameters for the particular subscriber flow to improve timing latency for the particular subscriber flow.
Abstract:
A first device is configured to receive an instruction from a second device, identify network demand associated with the instruction, identify a third device associated with the instruction, send a first load query to the third device, and receive a first load response from the third device. The first load response may identify network capacity associated with the third device and may indicate that the third device is under-loaded, overloaded, or substantially overloaded. The first device is further configured to send a first portion of data, associated with the instruction from the second device, to the third device based on the network capacity indicating that the third device is under-loaded, and send a second portion of data, associated with the instruction from the second device, to a fourth device based on the network capacity indicating that the third device is under-loaded.
Abstract:
An indoor broadband device receives, from a user device, a first request for content; determines a quality of service (QoS) level at which the content is to be provided to the user device; provides a second request for the content, at the determined QoS level, to a wireless access network, the wireless access network connecting to a network that provides broadband services; receives, based on the second request, the content, at the determined QoS level, from the wireless access network; processes the content in a manner that conforms to the QoS level and in a format that is supported by the user device; and provides the content to the user device.
Abstract:
A gateway device, provided in a customer premises, receives a call from a user device, and detects dialed information associated with the call. The gateway device identifies the call as an emergency call based on the dialed information, and terminates all other calls communicated by the gateway device except for the emergency call. The gateway device notifies an outdoor broadband unit, associated with the customer premises, about the emergency call.