摘要:
A method for cleaning a wafer with a drip nozzle being configured for use in a drip manifold that is oriented over a brush of a wafer cleaning system is provided. The drip nozzle has a first end and a second end with a passage defined there between where the passage includes a wall that extends longitudinally between the first end and the second end. An orifice is defined within the passage and located at the first end of the drip nozzle. The method includes inputting a fluid into the drip nozzle at an acute angle relative to a longitudinal extension of the wall and reflecting the fluid stream off an internal wall of the drip nozzle at least twice in a direction that is toward the second end. The method further includes outputting at least one substantially uniform drop from the second end of the passage.
摘要:
A drip manifold having drip nozzles configured to form controlled droplets is provided for use in wafer cleaning systems. The drip manifold includes a plurality of drip nozzles that are secured to the drip manifold. Each of the plurality of drip nozzles has a passage defined between a first end and a second end. A sapphire orifice is defined within the passage and is located at the first end of the drip nozzle. The sapphire orifice is angled to produce a fluid stream that is reflected within the passage and toward the second end to form one or more uniform drops over a brush.
摘要:
A method for transporting a substrate is provided. In this method, a non-Newtonian fluid is provided and the substrate is suspended in the non-Newtonian fluid. The non-Newtonian fluid is capable of supporting the substrate. Thereafter, a supply force is applied on the non-Newtonian fluid to cause the non-Newtonian fluid to flow, whereby the flow is capable of moving the substrate along a direction of the flow. Apparatuses and systems for transporting the substrate using the non-Newtonian fluid also are described.
摘要:
One of many embodiments of a substrate preparation system is provided which includes a head having a head surface where the head surface is proximate to a surface of the substrate. The system also includes a first conduit for delivering a first fluid to the surface of the substrate through the head, and a second conduit for delivering a second fluid to the surface of the substrate through the head, where the second fluid is different than the first fluid. The system also includes a third conduit for removing each of the first fluid and the second fluid from the surface of the substrate where the first conduit, the second conduit and the third conduit act substantially simultaneously.
摘要:
A system is provided for use in semiconductor wafer cleaning operations. The cleaning system has a top cap and a bottom cap. The top cap seals on a top surface contact ring of a wafer, and the bottom cap seals on a bottom surface contact ring of the wafer. The wafer is held between the top cap and the bottom cap. An edge clean roller is used for cleaning an edge of the wafer. A drive roller is configured to rotate the wafer, the top cap, and the bottom cap. The edge clean roller rotates at a first velocity and the drive roller rotates at a second velocity so as to facilitate an edge cleaning of the wafer by the edge clean roller.
摘要:
An electroplating apparatus for depositing a metallic layer on a surface of a wafer is provided. In one example, a proximity head capable of being electrically charged as an anode is placed in close proximity to the surface of the wafer. A plating fluid is provided between the wafer and the proximity head to create localized metallic plating.
摘要:
Cleaning compounds, apparatus, and methods to remove contaminants from a substrate surface are provided. An exemplary cleaning compound to remove particulate contaminants from a semiconductor substrate surface is provided. The cleaning compound includes a viscous liquid with a viscosity between about 1 cP to about 10,000 cP. The cleaning compound also includes a plurality of solid components dispersed in the viscous liquid, the plurality of solid components interact with the particulate contaminants on the substrate surface to remove the particulate contaminants from the substrate surface.
摘要:
An apparatus, system and method for preparing a surface of a substrate using a proximity head includes applying a non-Newtonian fluid between the surface of the substrate and a head surface of the proximity head. The non-Newtonian fluid defines a containment wall along one or more sides between the head surface and the surface of the substrate. The one or more sides provided with the non-Newtonian fluid define a treatment region on the substrate between the head surface and the surface of the substrate. A Newtonian fluid is applied to the surface of the substrate through the proximity head, such that the applied Newtonian fluid is substantially contained in the treatment region defined by the containment wall. The contained Newtonian fluid aids in the removal of one or more contaminants from the surface of the substrate. In one example, the non-Newtonian fluid can also be used to create ambient controlled isolated regions, which can assist in controlled processing of surfaces within the regions. In an alternate example, a second non-Newtonian fluid is applied to the treatment region instead of the Newtonian fluid. The second non-Newtonian fluid acts on one or more contaminants on the surface of the substrate substantially removing them from the surface of the substrate.
摘要:
Methods for processing substrate through a head that is configured to be placed in close non-contact proximity to a surface of a substrate are provided. One method includes applying a first fluid onto the surface of the substrate from conduits in the head when the head is in close proximity to the surface of the substrate and removing the first fluid from the surface of the substrate. The removing is processed just as first fluid is applied to the surface of the substrate, and the removing ensures that the applied first fluid is contained between a surface of the head and the surface of the substrate and the first fluid being applied and removed defines a controlled meniscus. The method further includes moving the controlled meniscus over different regions of the surface of the substrate when movement of the head or the substrate is dictated. The moving of the controlled meniscus enables processing of part or all of the surface of the substrate using the first fluid.
摘要:
A substrate holder is defined to support a substrate. A rotating mechanism is defined to rotate the substrate holder. An applicator is defined to extend over the substrate holder to dispense a cleaning material onto a surface of the substrate when present on the substrate holder. The applicator is defined to apply a downward force to the cleaning material on the surface of the substrate. In one embodiment the cleaning material is gelatinous.