摘要:
A three-dimensional (3D) printing apparatus using selective electrochemical deposition is provided. The 3D printing apparatus is used to selectively deposit a metallic material on a substrate using a nozzle for jetting an electrolyte at a predetermined pressure to enhance 3D printing speed of a metallic product stacked on the substrate. The 3D printing apparatus is configured in such a way that a metallic product is 3D-printed as a metallic material is selectively deposited on the substrate while the electrolyte is continuously jetted at a predetermined pressure and, thus, 3D printing speed of a metallic product stacked on the substrate is remarkably increased compared with the case according to the prior art (Korean Publication No. 10-2015-0020356) in which plating is performed only when a meniscus is formed. Accordingly, the 3D printing apparatus is also applied to 3D printing of a bulk type of a metallic product with a comparatively large shape.
摘要:
Due to repeated use of a gauge portion, used to perform positioning and accuracy comparison measurement at the time of manufacture of various type of molds for metalworking, a gauge line on an outer circumferential surface portion of the gauge portion can disappear due to friction. A plug gauge body, which helps a user recognize the time for maintenance and replacement of the plug gauge, has a constricted portion formed on one side of a shank portion and a cylindrical gauge portion having a uniform diameter and extending from one side of the constricted portion, with the shank portion, the constricted portion, and the gauge portion, being formed axially, a wear checking gauge line having a predetermined depth and width formed so as to extend from one end portion of an outer circumferential surface portion of the gauge portion in the direction of the constricted portion.
摘要:
A hardened formed part is manufactured with the steps: producing a blank from a hardenable strip material; heating of the blank to an austenitisation temperature; forming and hardening of the blank to a hardened formed part; cleaning the hardened formed part; coating the hardened formed part with a metallic coating in an dipping bath with an electrolyte solution, wherein during the coating process, at least one auxiliary element is used in the dipping bath, such, that the deposition of the coating is partially influenced. A plant is used for manufacturing a hardened formed part.
摘要:
Due to repeated use of a gauge portion, used to perform positioning and accuracy comparison measurement at the time of manufacture of various type of molds for metalworking, a gauge line on an outer circumferential surface portion of the gauge portion can disappear due to friction. A plug gauge body, which helps a user recognize the time for maintenance and replacement of the plug gauge, has a constricted portion formed on one side of a shank portion and a cylindrical gauge portion having a uniform diameter and extending from one side of the constricted portion, with the shank portion, the constricted portion, and the gauge portion, being formed axially, a wear checking gauge line having a predetermined depth and width formed so as to extend from one end portion of an outer circumferential surface portion of the gauge portion in the direction of the constricted portion.
摘要:
A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
摘要:
A method of electrochemical deposition uses microdroplets of electrolytic solution over a targeted small circuit element. Only the targeted circuit element is electrically biased so that deposition occurs on the surface of that element, underneath the microdroplet, and nowhere else unless it is under other microdroplet(s). The invented method achieves extremely accurate and selective electrochemical deposition with a tiny amount of electrolytic solution, compared to conventional submersive and/or immersive methods, and eliminates the need for masking or etching, reducing the costs of manufacture and amount of waste electrolytic solution produced.
摘要:
An electroplating head is disposed above and proximate to an upper surface of a wafer. Cations are transferred from an anode to an electroplating solution within the electroplating head. The electroplating solution flows downward through a porous electrically resistive material at an exit of the electroplating head to be disposed on the upper surface of the wafer. An electric current is established between the anode and the upper surface of the wafer through the electroplating solution. The electric current is uniformly distributed by the porous electrically resistive material present between the anode and the upper surface of the wafer. The electric current causes the cations to be attracted to the upper surface of the wafer.
摘要:
Electrolytic methods are used to treat large external surfaces. There is described a method for internally coating through-holes of a wall, wherein an electrolyte flows through the through-hole during the treatment and deposits material on the respective inner surface. A single electrode is being used for at least two through-holes.
摘要:
One embodiment of the invention is an apparatus for electrochemical deposition (ECD) of a metal or an alloy inside at least one opening located at a front surface of a substrate, said apparatus including: (a) an electrochemical deposition (ECD) cell adapted to contain an electrolyte, the electrolyte including plating metallic ions and at least one inhibitor additive; (b) a cathode including at least a portion of said front surface of the substrate, wherein at least one surface inside said at least one opening includes an exposed metallic surface, and wherein at least a portion of said cathode is immersed in said electrolyte; (c) at least one anode, wherein at least a portion of the at least one anode is immersed in said electrolyte; (d) a power supply adapted to generate an electroplating current through the electrolyte between said cathode and said at least one anode; and (e) means for producing a turbulent flow of the electrolyte across the front surface of the substrate, wherein the turbulent flow is capable of producing a diffusion layer thickness of less than about 50 μm at said front surface of the substrate.
摘要:
A method and apparatus for forming a layer of plating on a base material and a method for manufacturing a three dimensional object. The plating apparatus includes a nozzle for delivering a stream of plating fluid and an electric source for applying a voltage between the base material and the nozzle. The nozzle has an outer wall and a stem located at its center. The nozzle delivers plating fluid from the opening of the nozzle in an annular manner to produce a stream that has a substantially uniform flow velocity when the stream hits the base material. In an another embodiment, the nozzle has surrounding conduit for conducting air. The air increases the velocity of a peripheral portion of the stream. To manufacture a three dimensional object, a plating layer is deposited, and the nozzle is moved to form a desired shape while piling the layer.