摘要:
A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum. Luminescent semiconductor nanoparticles having exemplary properties are also provided.
摘要:
A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of these nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A; and can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone. This method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
摘要:
A method is described for the manufacture of semiconductor nanoparticles. Improved yields are obtained by use of a reducing agent or oxygen reaction promoter.
摘要:
Methods for synthesizing luminescent nanoparticles and nanoparticles prepared by such methods are provided. The nanoparticles are prepared by a method in which an additive is included in the reaction mixture. The additive may be a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, or a Group 16 element. In additions, a luminescent nanoparticle is provided that comprises a semiconductive core surrounded by an inorganic shell, an interfacial region and an additive present in the interfacial region or both the interfacial region and the shell.
摘要:
A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum. Luminescent semiconductor nanoparticles having exemplary properties are also provided.
摘要:
Methods for synthesizing luminescent nanoparticles and nanoparticles prepared by such methods are provided. The nanoparticles are prepared by a method in which an additive is included in the reaction mixture. The additive may be a Group 2 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, or a Group 16 element. In additions, a luminescent nanoparticle is provided that comprises a semiconductive core surrounded by an inorganic shell, an interfacial region and an additive present in the interfacial region or both the interfacial region and the shell.
摘要:
Nanocrystals having an indium-based core and methods for making them and using them to construct core-shell nanocrystals are described. These core-shell nanocrystals are highly stable and provide higher quantum yields than known nanocrystals of similar composition, and they provide special advantages for certain applications because of their small size.
摘要:
Methods for preparing core/shell nanocrystals are provided, using mismatched shell precursors and an electron transfer agent to control the nucleation and growth phases of particle formation. One method includes forming a reaction mixture comprising a plurality of nanocrystals, a first shell precursor, a second shell precursor, a weak electron transfer agent, and optionally a solvent, wherein, the first shell precursor and the second shell precursor have different oxidation states; and heating the reaction mixture to a temperature high enough to induce formation of the shell on each of the plurality of nanocrystals.
摘要:
A population of bright and stable nanocrystals is provided. The nanocrystals include a semiconductor core and a thick semiconductor shell and can exhibit high extinction coefficients, high quantum yields, and limited or no detectable blinking.
摘要:
Nanocrystals having a ZnTe core and methods for making and using them to construct core-shell nanocrystals are described. These core-shell nanocrystals are highly stable and provide quantum yields and stability suitable for applications such as flow cytometry, cellular imaging, and protein blotting, medical imaging, and other applications where cadmium toxicity is an issue.