Abstract:
Provided is a germanium photodetector having a germanium epitaxial layer formed without using a buffer layer and a method of fabricating the same. In the method, an amorphous germanium layer is formed on a substrate. The amorphous germanium layer is heated up to a high temperature to form a crystallized germanium layer. A germanium epitaxial layer is formed on the crystallized germanium layer.
Abstract:
Methods of forming photo detectors are provided. The method includes providing a semiconductor layer on a substrate, forming a trench in the semiconductor layer, forming a first single crystalline layer and a second single crystalline layer using a selective single crystalline growth process in the trench, and patterning the first and second single crystalline layers and the semiconductor layer to form a first single crystalline pattern, a second single crystalline pattern and an optical waveguide.
Abstract:
Provided are light detection devices and methods of manufacturing the same. The light detection device includes a first conductive pattern on a surface of a substrate, an insulating pattern on the substrate and having an opening exposing at least a portion of the first conductive pattern, a light absorbing layer filling the opening of the insulating pattern and having a top surface disposed at a level substantially higher than a top surface of the insulating pattern, a second conductive pattern on the light absorbing layer, and connecting terminals electrically connected to the first and second conductive patterns, respectively.
Abstract:
The inventive concept provides semiconductor laser devices and methods of fabricating the same. According to the method, a silicon-crystalline germanium layer for emitting a laser may be formed in a selected region by a selective epitaxial growth (SEG) method. Thus, surface roughness of both ends of a Fabry Perot cavity formed of the silicon-crystalline germanium layer may be reduced or minimized, and a cutting process and a polishing process may be omitted in the method of fabricating the semiconductor laser device.
Abstract:
Provided is an optical network structure. To configure an optical network structure between hundreds or more of cores in a CPU, intersection between waveguides does not occur, and thus, the optical network structure enables two-way communication between all the cores without an optical switch disposed in an intersection point. The present invention enables a single chip optical network using a silicon photonics optical element, and a CPU chip configured with hundreds or thousands of cores can be developed.
Abstract:
Disclosed herein is a printed circuit board for an optical waveguide, including: a substrate; an insulation layer having a through hole and formed on the substrate; a lower clad layer formed on a bottom of the through hole; core part formed on the lower clad layer; and an upper clad layer formed on the lower clad layer and the core part and thus covering an exposed surface of the core part.
Abstract:
Disclosed herein is an optical element package substrate configured such that electric wiring substrates having a cavity are layered on both sides of an optical waveguide, an optical element package is mounted in the electric wiring substrates, and an optical element mounted on the surface of the optical element package is housed in the cavity, so that the distance between the optical element and the optical waveguide is decreased, thereby increasing optical connection efficiency.
Abstract:
Disclosed herein is a printed circuit board including an optical waveguide and a method of manufacturing the board. In the board, the optical waveguide includes a metal layer extending portion integrally connected to a metal layer constituting a mirror formed in the optical waveguide. Since the method of the present invention creates the mirror using electroless plating, which is typically used in a process of manufacturing general printed circuit boards, it is suitable for the manufacture of printed circuit boards having a large area, and the mirror has high reflectivity and is efficient in terms of material consumption.
Abstract:
Disclosed herein is a printed circuit board for an optical waveguide, including a base board, and an optical waveguide formed on the base board. The optical waveguide includes a lower clad layer formed on the base board, an insulation layer formed on the lower clad layer and having a core-forming through-hole, a core part formed on a region of the lower clad layer, which is exposed through the through-hole, and an upper clad layer formed in the through-hole and on the insulation layer.
Abstract:
An optoelectronic device and a method of manufacturing the same which the optoelectronic effect such as light emission or light reception can be increased by forming a dual-structural nano dot to enhance the confinement density of electrons and holes are provided. The optoelectronic device comprises an electron injection layer, a nano dot, and a hole injection layer. The nano dot has a dual structure composed of an external nano dot and an internal dot. The method of manufacturing the optoelectronic device comprises the steps of forming an electron injection layer on a semiconductor substrate; growing nano dot layer on the electron injection layer by an epi-growth method; heating the nano dot layer so that the nano dot has a dual structure composed of an external nano dot and an internal nano dot; and forming a hole injection layer on the overall structure.