Abstract:
Devices and methods for simultaneous injection or delivery of two or more substances from separate syringes. The syringes are loaded into a device that has a handle and a screw driven mechanism for simultaneously depressing the plungers of the syringes. The user grasps the handle and positions the device. Thereafter, the screw mechanism is used to simultaneously advance the plungers of the syringes thereby simultaneously expelling the substances from the syringes.
Abstract:
Devices and methods for simultaneous injection or delivery of two or more substances from separate syringes. The syringes are loaded into a device that has a handle and a screw driven mechanism for simultaneously depressing the plungers of the syringes. The user grasps the handle and positions the device. Thereafter, the screw mechanism is used to simultaneously advance the plungers of the syringes thereby simultaneously expelling the substances from the syringes.
Abstract:
Devices and methods for simultaneous injection or delivery of two or more substances from separate syringes. The syringes are loaded into a device that has a handle and a screw driven mechanism for simultaneously depressing the plungers of the syringes. The user grasps the handle and positions the device. Thereafter, the screw mechanism is used to simultaneously advance the plungers of the syringes thereby simultaneously expelling the substances from the syringes.
Abstract:
Devices and methods for simultaneous injection or delivery of two or more substances from separate syringes. The syringes are loaded into a device that has a handle and a screw driven mechanism for simultaneously depressing the plungers of the syringes. The user grasps the handle and positions the device. Thereafter, the screw mechanism is used to simultaneously advance the plungers of the syringes thereby simultaneously expelling the substances from the syringes.
Abstract:
An obstruction removal system for percutaneous removal of clots or obstructions within the vascular system is disclosed. The obstruction removal system includes a multi-lumen catheter with a plurality of circulating capture devices attached to or integral with a drive belt. The circulating capture or interference devices affect removal of the clot or obstruction bit-by-bit through a series of passes. The obstruction removal system may include one or more drive mechanisms, such as a pulley system and/or a vacuum source and/or a pressurization source, on its proximal end for driving the drive belt and capture devices through the catheter in a circulating manner. The obstruction removal system may also include one or more cleaning mechanisms, such as a vacuum chamber and/or a fluid rinse chamber, for removing the captured clot pieces from the capture devices.
Abstract:
Devices and methods for limiting the depth to which a penetrator is advanced into an organ or mass of tissue. The device generally comprises a first member and a second member. The penetrator is attached to and extends from a second member. The first member has a penetrator shroud and a hollow bore extending therethrough. The second member is engageable with the first member such that a distal portion of the penetrator extends through the penetrator shroud. The distance to which the penetrator protrudes out of and beyond the distal end of the penetrator shroud is adjustable in accordance with the desired depth of penetration. The penetrator may then be advanced into the organ or tissue mass until the distal end of the shroud abuts against the organ or tissue mass, thereby stopping further advancement of the penetrator. The penetrator may have one or more lumen(s) for aspirating or infusing substances.
Abstract:
An obstruction removal system for percutaneous removal of clots or obstructions within the vascular system is disclosed. The obstruction removal system includes a multi-lumen catheter with a plurality of circulating capture devices attached to or integral with a drive belt. The circulating capture or interference devices affect removal of the clot or obstruction bit-by-bit through a series of passes. The obstruction removal system may include one or more drive mechanisms, such as a pulley system and/or a vacuum source and/or a pressurization source, on its proximal end for driving the drive belt and capture devices through the catheter in a circulating manner. The obstruction removal system may also include one or more cleaning mechanisms, such as a vacuum chamber and/or a fluid rinse chamber, for removing the captured clot pieces from the capture devices.
Abstract:
Methods and apparatus for occluding blood flow within a blood vessel. In a first series of embodiments, the present invention comprises a plurality of embolic devices deployable through the lumen of a conventional catheter such that when deployed, said embolic devices remain resident and occlude blood flow at a specific site within the lumen of the blood vessel. Such embolic devices comprise either mechanical embolic devices that become embedded within or compress against the lumen of the vessel or chemical vaso-occlusive agents that seal off blood flow at a given site. A second embodiment of the present invention comprises utilization of a vacuum/cauterizing device capable of sucking in the lumen of the vessel about the device to maintain the vessel in a closed condition where there is then applied a sufficient amount of energy to cause the tissue collapsed about the device to denature into a closure. In a third series of embodiments, the present invention comprises the combination of an embolization facilitator coupled with the application of an energy force to form an intraluminal closure at a specified site within a vessel.
Abstract:
Methods and apparatus for occluding blood flow within a blood vessel. In a first series of embodiments, the present invention comprises a plurality of embolic devices deployable through the lumen of a conventional catheter such that when deployed, said embolic devices remain resident and occlude blood flow at a specific site within the lumen of the blood vessel. Such embolic devices comprise either mechanical embolic devices that become embedded within or compress against the lumen of the vessel or chemical vaso-occlusive agents that seal off blood flow at a given site. A second embodiment of the present invention comprises utilization of a vacuum/cauterizing device capable of sucking in the lumen of the vessel about the device to maintain the vessel in a closed condition where there is then applied a sufficient amount of energy to cause the tissue collapsed about the device to denature into a closure. In a third series of embodiments, the present invention comprises the combination of an embolization facilitator coupled with the application of an energy force to form an intraluminal closure at a specified site within a vessel.
Abstract:
Magnetic resonance image (MRI) guided tissue penetrating catheters and their methods of use. One or more MRI apparatus (e.g., one or more coils) are positioned on or in a catheter device that includes a tissue penetrator that may be used to form a penetration tract from a body lumen in which the catheter is positioned to a target location outside of that body lumen. The MRI apparatus (e.g., coil(s)) is/are used in conjunction with an MRI imaging system to indicate the position and/or rotational orientation of the penetrating catheter within the subject's body.