摘要:
An electronic structure comprising: (a) a first metal layer; (b) a second metal layer; (c) and at least one insulator layer located between the first metal layer and the second metal layer, wherein at least one of the metal layers comprises an amorphous multi-component metallic film. In certain embodiments, the construct is a metal-insulator-metal (MIM) diode.
摘要:
An electronic structure comprising: (a) a first metal layer; (b) a second metal layer; (c) and at least one insulator layer located between the first metal layer and the second metal layer, wherein at least one of the metal layers comprises an amorphous multi-component metallic film. In certain embodiments, the construct is a metal-insulator-metal (MIM) diode.
摘要:
Nanolaminates comprised of alternating layers of amorphous, multi-component metallic films (AMMFs) and metal oxide films are disclosed as metamaterials whose physical properties can be engineered to customize the resulting electrical, average dielectric, and thermal properties. In certain configurations using AMMFs, the construct may be an optical or an electronic element, such a metal-insulator-metal (MIM) diode, for example.
摘要:
Phosphor compositions of the formula Zn1-3x/2MxX:Mn, wherein M is selected from the group consisting of the trivalent cations of Al, In, Ga, and mixtures thereof, and X is selected from the group consisting of S, Se, Te, and mixtures thereof are disclosed. Also disclosed are phosphor compositions of the formula, MX:Cu,L,A wherein M is selected from the divalent ions of Sr, Mg, Ca, Ba, X is selected from the group consisting of S, Se, Te, and mixtures thereof, and mixtures thereof, L is selected from the group consisting of the trivalent cations of the lanthanides, Al, In, Ga, Sc, and mixtures thereof, and A is selected from the alkali metal ions or mixtures thereof. Emission chromaticity of the phosphors is controlled by varying codopant concentrations. Electroluminescent devices comprising the phosphors also are disclosed.
摘要:
Described are nonlinear optical (NLO) crystals, including aluminum-borate NLO crystals, that have low concentrations of contaminants that adversely affect the NLO crystal's optical properties, such as compounds that contain transition-metal elements and/or lanthanides, other than yttrium, lanthanum, and lutetium. Some NLO crystals with low concentrations of these contaminants are capable of second harmonic generation at very short wavelengths. Also described are embodiments of a method for making these NLO crystals. Some embodiments involve growing a single NLO crystal, such as an aluminum-borate NLO crystal, from a mixture containing a solvent that is substantially free of harmful contaminants. The described NLO crystals can be used, for example, in laser devices.
摘要:
Metal chalcogenide precursor solutions are described that comprise an aqueous solvent, dissolved metal formate salts and a chalcogenide source composition. The chalcogenide source compositions can be organic compounds lacking a carbon-carbon bond. The precursors are designed to form a desired metal chalcogenide upon thermal processing into films with very low levels of contamination. Potentially contaminating elements in the precursors form gaseous or vapor by-products that escape from the vicinity of the product metal chalcogenide films.
摘要:
Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
摘要:
Nonlinear optical materials, methods of crystal growth, and devices employing such materials satisfy the general formula (&Sgr;i=1-3M&agr;i1)(&Sgr;j=1-3M&bgr;j2)(&Sgr;k=1-6M&ggr;k3)B14O25 Formula 1 wherein M1, M2, and M3 are mono-, di, or tri-valent metal ions respectively; wherein (&Sgr;i=1-3&agr;i)=X and ranges from 0 to 2, (&Sgr;j=1-3&bgr;j)=Y and ranges from 0 to 4, and (&Sgr;k=1-6&ggr;k)=Z and ranges from 0 to 2, and wherein X+Y+Z=4.0. Other nonlinear optical compounds according to this invention also generally satisfy Formula 2 through 7 below: (&Sgr;j=1-3M&bgr;j2)B14O25, where (&Sgr;j=1-3&bgr;j)=4 Formula 2 M42B14O25 Formula 3 (&Sgr;i=1-3M&agr;i1)(&Sgr;k=1-6M&ggr;k3)B14O25 Formula 4 where (&Sgr;i=1-3&agr;i)=2, and (&Sgr;k=1-6&ggr;k)=2. M21M23B14O25 Formula 5 (&Sgr;i=1-3M&agr;i1)(&Sgr;j=1-3M&bgr;j2)(&Sgr;k=1-6M&ggr;k3)B14O25 Formula 6 where (&Sgr;i=1-3&agr;i)=1, (&Sgr;j=1-3&bgr;j)=2, and (&Sgr;k=1-6&ggr;k)=1. and M1M22M3B14O25 Formula 7.
摘要:
Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
摘要:
One disclosed embodiment concerns an aqueous inorganic coating precursor solution comprising a mixture of water, polynuclear aluminum hydroxide cations, and polyatomic ligands selected from nitrate (NO3−), nitrite (NO2−), or combinations thereof. In certain embodiments, the composition has a molar concentration ratio of polyatomic ligands to aluminum of less than 3; an aluminum cation concentration of from about 0.01 M to about 3.5 M; and/or a polyatomic anion concentration of from about 0.1 to about 2.5 times the aluminum cation concentration. Embodiments of a method for forming the precursor solution also are disclosed. For example, certain embodiments comprise adding a metal having a sufficient reduction potential to reduce nitric acid to an aqueous solution comprising aluminum nitrate (Al(NO3)3).