Abstract:
Provided are a liquid metal mixture, and a method of forming a conductive pattern using the same. The liquid metal mixture includes a polymer powder of about 10 to about 90 wt %, and a liquid metal included in an amount of about 10 to about 90 wt % and covering surfaces of particles of the polymer powder, wherein the polymer powder has a polar functional group. The method includes preparing a liquid metal mixture, forming a first pattern on a substrate with the liquid metal mixture, and forming a second pattern by pressing or heating the first pattern.
Abstract:
Disclosed are a system for and a method of manufacturing a three-dimensional (3D) structure. The method may include injecting a fluid with a first pressure toward a surface of a first output layer to form a softening layer in the first output layer, injecting the fluid with a second pressure toward the softening layer to form an uneven structure in the softening layer, the second pressure being higher than the first pressure, and forming a second output layer on the softening layer with the uneven structure.
Abstract:
Provided is a noble metal material for 3D printing, the noble metal material including an alloy that contains gold (Au) and a first metal that is different from the gold, wherein the alloy contains about 50 wt % to about 100 wt % of the gold and contains more than about 0 wt % and at most about 50 wt % of the first metal, and the melting point of the alloy is at most 400° C.
Abstract:
Provided is a method of forming a graphene electrode including providing a solution including graphenes on a substrate, pressing a mold having a pattern onto the substrate to fill up the solution in the pattern of the mold, applying a temperature and a pressure to the mold so that the graphenes are arranged in a vertical direction with respect to a surface of the substrate, removing the solution, and separating the mold from the substrate to form an electrode including the graphenes on the substrate.
Abstract:
Provided are a radio frequency identification tag and a method of manufacturing the same. The radio frequency identification tag includes a substrate, an antenna unit provided on the substrate and configured to transmit and receive signals, an integrated circuit unit spaced apart from the antenna unit on the substrate, and an interrupter and a delay circuit unit connected in parallel between the antenna unit and the integrated circuit unit, wherein the interrupter includes a variable portion and a fixed portion opposite the variable portion, wherein the delay circuit unit includes a capacitor and a resistor.
Abstract:
Disclosed are an apparatus for manufacturing electrodes and a method of manufacturing electrodes. The method of manufacturing electrodes includes providing a metal substrate having first and second surfaces opposite to each other, performing a patterning process on the first surface of the metal substrate, coating an electrode material on the first surface of the metal substrate, after the patterning process, and irradiating the electrode material, which is coated on the metal substrate, with light. The patterning process includes forming a plurality of holes to penetrate the metal substrate or forming a plurality of grooves to have a shape recessed from the first surface toward the second surface.
Abstract:
Provided is a method for manufacturing a capacitor. The method includes forming a separator on a first electrode, forming a second electrode on the separator, and filling pores with an electrolyte, wherein the separator includes patterns and pores defined by the patterns, and the patterns formed by directly applying an ink to the first electrode through a printing process.
Abstract:
An extruder for a metal material includes a cylinder having a receiving space in which a solid metal material is provided, a nozzle extending from a lower end of the cylinder, an upper coil provided on an outer surface of the cylinder and melting the solid metal material to form a liquid metal material, and a first lower coil provided on an outer surface of the nozzle to control an extruded shape of the liquid metal material.
Abstract:
Provided are a large-area nano-scale active printing device, a fabricating method of the same, and a printing method using the same. The printing device may include a substrate, first interconnection lines extending along a first direction, on the substrate, an interlayered dielectric layer provided on the first interconnection lines to have holes partially exposing the first interconnection lines, second interconnection lines provided adjacent to the holes in the interlayered dielectric layer to cross the first interconnection lines, and wedge-shaped electrodes provided at intersections with the first and second interconnection lines and connected to the first interconnection lines. The wedge-shaped electrodes protrude upward at centers of the holes.
Abstract:
Disclosed are a method for manufacturing a planarizing printed electronic device and a planarizing printed electronic device manufactured by using the same by simply implementing a large-area embedded printed electronic device by coupling a printing process such as inkjet printing and gravure printing and a transferring process using a laminating device and particularly, solving defects due to large surface roughness and a thickness of a printed layer included in the printed electronic device, when manufacturing an embedded printed electronic device where a printed layer is embedded in a substrate.