Abstract:
A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber defining a resonant cavity for supporting a primary microwave resonance mode having a primary microwave resonance mode frequency f; a plurality of microwave sources coupled to the plasma chamber for generating and feeding microwaves having a total microwave power Pτ into the plasma chamber; a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; and a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate on which the synthetic diamond material is to be deposited in use, wherein the plurality of microwave sources are configured to couple at least 30% of the total microwave power Pτ into the plasma chamber in the primary microwave resonance mode frequency f, and wherein at least some of the plurality of microwave sources are solid state microwave sources.
Abstract:
A free-standing non-planar polycrystalline CVD synthetic diamond component which comprises a nucleation face and a growth face, the nucleation face comprising smaller grains than the growth face, the nucleation face having a surface roughness Ra no more than 50 nm, wherein the free-standing non-planar polycrystalline CVD synthetic diamond component has a longest linear dimension when projected onto a plane of no less than 5 mm and is substantially crack free over at least a central region thereof, wherein the central region is at least 70% of a total area of the free-standing non-planar polycrystalline CVD synthetic diamond component, wherein the central region has no cracks which intersect both external major faces of the free-standing non-planar polycrystalline CVD synthetic diamond component and extend greater than 2 mm in length.
Abstract:
A polycrystalline chemical vapour deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 70 mm; a thickness equal to or greater than 1.3 mm; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centred on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ≦0.2 cm−1 at 10.6 μm; and a dielectric loss coefficient at 145 GHz, of tan δ≦2×10−4.
Abstract:
A polycrystalline chemical vapour deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 125 mm; a thickness equal to or greater than 200 μm; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centred on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient≦0.2 cm−1 at 10.6 μm; and a dielectric loss coefficient at 145 GHz, of tan δ≦2×10−4.
Abstract:
A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition includes a microwave generator configured to generate microwaves at a frequency f, a plasma chamber that defines a resonance cavity for supporting a microwave resonance mode, a microwave coupling configuration for feeding microwaves from the microwave generator into the plasma chamber, a gas flow system for feeding process gases into the plasma chamber and removing them therefrom, and a substrate holder disposed in the plasma chamber and having a supporting surface for supporting a substrate on which the synthetic diamond material is to be deposited in use. The resonance cavity is configured to have a height that supports a TM011 resonant mode at the frequency f and is further configured to have a diameter that satisfies the condition that a ratio of the resonance cavity height/the resonance cavity diameter is in the range 0.3 to 1.0.
Abstract:
A polycrystalline chemical vapour deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 125 mm; a thickness equal to or greater than 200 μm; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centred on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ≤0.2 cm−1 at 10.6 μm; and a dielectric loss coefficient at 145 GHz, of tan δ≤2×10−4.
Abstract:
A polycrystalline chemical vapor deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 125 mm; a thickness equal to or greater than 200 μm; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centered on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ≤0.2 cm−1 at 10.6 μm; and a dielectric loss coefficient at 145 GHz, of tan δ≤2×10−4.
Abstract:
A free-standing non-planar polycrystalline CVD synthetic diamond component which comprises a nucleation face and a growth face, the nucleation face comprising smaller grains than the growth face, the nucleation face having a surface roughness Ra no more than 50 nm, wherein the free-standing non-planar polycrystalline CVD synthetic diamond component has a longest linear dimension when projected onto a plane of no less than 5 mm and is substantially crack free over at least a central region thereof, wherein the central region is at least 70% of a total area of the free-standing non-planar polycrystalline CVD synthetic diamond component, wherein the central region has no cracks which intersect both external major faces of the free-standing non-planar polycrystalline CVD synthetic diamond component and extend greater than 2 mm in length.
Abstract:
An electrochemical cell for treating a fluid, the electrochemical cell comprising: at least two opposing electrodes defining a flow path for the fluid between the electrodes, where at least one of the electrodes is formed of electrically conductive diamond material; drive circuitry configured to apply a potential across the electrodes such that a current flows between the electrodes when the fluid is flowed through the flow path between the electrodes; and a housing in which the electrodes are disposed, the housing comprising pressure seals configured to containing the fluid within the fluid path and a support structure for supporting the electrodes, wherein the support structure and the pressure seals are configured such that the electrochemical cell has an operating pressure in a range 2 to 10 bar within which the electrodes are supported without fracturing and within which the fluid is contained within the flow path, wherein the electrodes are spaced apart by a distance in a range 0.5 mm to 4 mm, and wherein the drive circuitry is configured to apply a potential across the electrodes giving a current density ≥15,000 Amp/m2 over an electrode area of at least 20 cm2 for an operating voltage of no more than 20 V.
Abstract:
A microwave generator system for use in a microwave plasma enhanced chemical vapour deposition (MPECVD) system, the microwave generator system comprising: a microwave generator unit configured to produce microwaves at an operating power output suitable for fabricating synthetic diamond material via a chemical vapour deposition process; a fault detection system configured to detect a fault in the microwave generator unit which results in a reduction in the operating power output or a change in frequency; and a re-start system configured to restart the microwave generator unit in response to a fault being detected and recover the operating power output or frequency in a time period of less than 10 seconds after the fault in the microwave generator unit which caused the reduction in the operating power output or the change in frequency.