Abstract:
The present invention relates to a filter chip (1), comprising an interconnection of at least one first and one second resonator (2, 3) operating with bulk acoustic waves, wherein the first resonator (2) operating with bulk acoustic waves comprises a first piezoelectric layer (4) that is structured in such a way that the first resonator (2) has a lower resonant frequency than the second resonator (3).
Abstract:
An electroacoustic transducer has a piezoelectric layer, which is structured in such a way that, in the case of an alternating electric field applied in one spatial direction, an oscillation mode with oscillations in three spatial directions is excited.
Abstract:
An improved electroacoustic transducer with an improved mode profile is provided. The transducer comprises a velocity profile with a periodic structure and an edge structure flanking the periodic structure. The velocity profile also allows to suppress the SH wave mode.
Abstract:
An electroacoustic filter has improved low-pass characteristics. The filter includes a first electroacoustic converter, an electroacoustic element and a grid structure between the converter and the element. The grid structure is acoustically active in one frequency range that lies above the acoustically active frequency range of the first electroacoustic converter.
Abstract:
A metallization, for carrying current in an electrical component, includes a bottom layer overlying a substrate surface and includes titanium (Ti) or a titanium compound as main constituent. An upper layer overlies the bottom layer and includes copper (Cu) as main constituent. The bottom layer and the upper layer form a base layer. A top layer is in direct contact with the upper layer and includes aluminum (Al) as main constituent. The base layer further includes a middle layer, consisting of silver, that is arranged between the bottom layer and the upper layer.
Abstract:
An electroacoustic transducer has reduced loss due to acoustic waves emitted in the transverse direction. For this purpose, a transducer comprises a central excitation area, inner edge areas flanking the central excitation area, outer edge areas flanking the inner edge areas, and areas of the busbar flanking the outer edge areas. The longitudinal speed of the areas can be set so that the excitation profile of a piston mode is obtained.
Abstract:
An electroacoustic transducer has a piezoelectric layer, which is structured in such a way that, in the case of an alternating electric field applied in one spatial direction, an oscillation mode with oscillations in three spatial directions is excited.
Abstract:
An electroacoustic component includes a substrate configured to carry acoustic waves. The electroacoustic component can be a guided bulk acoustic wave (GBAW) device, for example. A structured electric conductive layer is arranged on the substrate and an electrically dielectric layer (for example, aluminum oxide) is also arranged over the substrate.