Abstract:
Single bulk unimorph piezoelectric elements, with interdigitated electrodes aligned obliquely relative to the direction perpendicular to the axis of the element, such that a torsional response is induced into the element. When such elements are used as a beam structure, with angularly oriented electrodes on both opposite surfaces of the beam, and with their orientations at mutually opposite angles, motion ranging from pure torsional rotation to pure bending can be obtained, depending on the comparative level and polarity of the voltages applied to each of the two electrode sets. If such elements are used as the spiral support arms of a central platform, a large displacement of the stage can be achieved. Due to the oblique orientation of the IDE's, the piezoelectric transduction induces torsional deformation in the spirals, and this torsion is converted by the spiral arms to a parallel out-of-plane platform motion.
Abstract:
Piezoelectric crystal elements are provided having preferred cut directions that optimize the shear mode piezoelectric properties. In the discovered cut directions, the crystal elements have super-high piezoelectric performance with d15, d24 and d36 shear modes at room temperature. The d15 shear mode crystal gives a maximum d value and is free from the cross-talk of d11 and d16. The d36 mode is extremely reliable compared to other shear elements due to its ready re-poling capability. The crystal elements may be beneficially used for high-sensitive acoustic transducers.
Abstract:
Piezoelectric crystal elements are provided having preferred cut directions that optimize the shear mode piezoelectric properties. In the discovered cut directions, the crystal elements have super-high piezoelectric performance with d15, d24 and d36 shear modes at room temperature. The d15 shear mode crystal gives a maximum d value and is free from the cross-talk of d11 and d16. The d36 mode is extremely reliable compared to other shear elements due to its ready re-poling capability. The crystal elements may be beneficially used for high-sensitive acoustic transducers.
Abstract:
The present invention discloses a composite polarization type piezoelectric actuator comprising a ceramic element having a first polarizing region and a second polarizing region, wherein the first polarizing region has a first polarizing direction different from a second polarizing direction of the second polarizing region. When a voltage is applied to the composite polarization type piezoelectric actuator, an end face of the ceramic element is deformed. When a pulse wave voltage is applied to the composite polarization type piezoelectric actuator, the end face of the ceramic element generates an elliptical motion.
Abstract:
A piezoelectric mechanism includes first and second electrodes and a thin film sheet of piezoelectric material. The second electrode is interdigitated in relation to the first electrode. The first and the second electrodes are embedded within the thin film sheet. The thin film sheet is polarized in a direction at least substantially perpendicular to a surface of the thin film sheet. The thin film sheet is to physically deform in a shear mode due to polarization of the thin film sheet at least substantially perpendicular to the surface of the thin film sheet, responsive to an electric field induced within the thin film sheet at least substantially parallel to the sheet via application of a voltage across the first and the second electrodes.
Abstract:
A rotational, shear mode, piezoelectric motor is integrated with a suspension, head or head gimbal assembly (HGA) into a collocated, rotational, shear mode, piezoelectric micro-actuated suspension, head or head gimbal assembly (HGA) for use in disk drives and disk drive manufacturing equipment. When excited by a control voltage, the collocated, shear mode, piezoelectric micro-actuated HGA rotates the head enabling high frequency, high resolution track positioning of the read/write element. The motor is integrated with the head and flexure (collocation). The head rotates about a rotation axis that is ideally located at the center of mass of the head. A shear mode piezoelectric motor rotates the head. A collocated, rotational, shear mode, piezoelectric micro-actuated HGA has high stiffness, high frequency response, high positioning resolution, low mass and low internal vibration for improved tracking, increased track density and greater disk drive storage capacity. Furthermore, its solid integration improves shock resistance and reduces micro-contamination.
Abstract:
A process for the preparation of piezoelectric single crystal elements involving the steps of mechanically finishing of a single crystal element with cuttings such as zxt±45°, coating electrodes on a pair of Z surfaces, poling the single crystal in a direction along the axis under a 500V/mm electric field.
Abstract:
A honeycomb-type piezoelectric/electrostrictive element includes a honeycomb structure section having a partition wall which partitions cells passing through the honeycomb structure section in an axial direction, and an electrode as an internal electrode disposed on an inner wall surface of the cell to internally cover the entire inner wall surface, wherein the partition wall is formed of a piezoelectric/electrostrictive body, and the honeycomb structure section can be deformed by applying a voltage between the electrodes disposed in the cells adjacent through the partition wall.
Abstract:
In a method of producing a micro-actuator, a first adhesive is applied to a movable plate, and a movable, and a movable electrode is placed on the first adhesive. A second adhesive is applied to the movable electrode, and a piezoelectric element is placed on the second adhesive. Next, a third adhesive is applied to an actuator base, a base electrode is placed on the third adhesive, and the third adhesive is semi-cured in the same manner as above. A fourth adhesive is applied to the base electrode, the piezoelectric element is placed on the fourth adhesive, and the fourth adhesive is semi-cured in the same manner as above. Finally, the adhered laminate thus obtained is placed into a heating furnace and heated at a predetermined temperature for a predetermined period of time to thereby fully cure the adhesives.
Abstract:
A T-shaped blade, or one or more hollow tubes, are vibrationally excited by one or more piezoelectric elements to generate an airflow from a free end of the blade or tube(s). The airflow may be directed to, or drawn away from, an electronic component to cool the electronic component.