摘要:
A circuit connected to a linear array of photosensors generates image data representative of information printed on a document and adjusts the gains applied to the outputs of selected ones of the photosensors to eliminate streaks in the image data otherwise due to the selected photosensors imaging debris on an optical reference surface. The circuit determines which photosensors have low output values during a factory scan of a clean white reference surface. During a subsequent user environment calibration scan, low output values are adjusted to the average of their neighbors, but only for locations not identified as having low outputs during the factory scan. The circuit additionally performs a PRNU compensation and further adjusts the gains applied to each of the outputs of the photosensors so that all of their output values have a substantially uniform value.
摘要:
Scanners and scanner housings are disclosed. An example scanner includes a housing to carry an optical element, the housing having a first support feature, and a printed circuit board having a second support feature to mate with the first support feature of the housing, the printed circuit board to provide vertical support to the housing when the first and second support features are mated.
摘要:
Disclosed are apparatuses and methods for holding a document sheet in place against a scanning surface of an image capture system. One such apparatus is a document cover comprising: a body that is oriented parallel to the scanning surface when the document cover is in the closed position; a compliant and elastic document backing that is partially attached to the body and configured to reflect light originating from the image capture system; and a backing constraint configured to secure a central region of the document backing to the body and further configured to constrain movement of the central region in a first direction that is normal to the scanning surface while allowing movement in the same direction of outer regions that are lateral to the central region. The document backing generates a downward spring force which biases the outer regions toward the platen.
摘要:
A scanning device includes a scanning mechanism, a memory, a processing mechanism, and a scan rate adjustment mechanism. The scanning mechanism scans a media sheet having an image thereon at a variable scan rate, to yield raw data. The memory temporarily stores the raw data. The processing mechanism converts the raw data within the memory into processed data. The raw data is removed from the memory as the raw data is converted. The scan rate adjustment mechanism adjusts the variable scan rate, based on one or more of an amount of free space within the memory, a fill rate at which the raw data is filling the memory, and a removal rate at which the raw data is being removed from the memory, so that the memory does not become completely full.
摘要:
MEMS devices include a substrate, an anchor attached to the substrate, and a multilayer member attached to the anchor and spaced apart from the substrate. The multilayer member can have a first portion that is remote from the anchor and that curls away from the substrate and a second portion that is adjacent the anchor that contacts the substrate. Related methods are also disclosed.
摘要:
Microelectromechanical actuators include a substrate, spaced apart supports on the substrate and a thermal arched beam that extends between the spaced apart supports and that further arches upon heating thereof, for movement along the substrate. One or more driven arched beams are coupled to the thermal arched beam. The end portions of the driven arched beams move relative to one another to change the arching of the driven arched beams in response to the further arching of the thermal arched beam, for movement of the driven arched beams. A driven arched beam also includes an actuated element at an intermediate portion thereof between the end portions, wherein a respective actuated element is mechanically coupled to the associated driven arched beam for movement therewith, and is mechanically decoupled from the remaining driven arched beams for movement independent thereof.
摘要:
A MEMS (Micro Electro Mechanical System) variable optical attenuator is provided that is capable of optical attenuation over a full range of optical power. The MEMS variable optical attenuator comprises a microelectronic substrate, a MEMS actuator and an optical shutter. The MEMS variable optical attenuator may also comprise a clamping element capable of locking the optical shutter at a desired attenuation position. The variable light attenuator is capable of attenuating optical beams that have their optical axis running parallel and perpendicular to the substrate. Additionally, the MEMS actuator of the present invention may comprise an array of MEMS actuators capable of supplying the optical shutter with greater displacement distances and, thus a fuller range of optical attenuation. In one embodiment of the invention, the MEMS actuator comprises a thermal arched beam actuator. Additionally, the variable optical attenuator of the present invention may be embodied in a thermal bimorph cantilever structure. This alternate embodiment includes a microelectronic substrate and a thermal bimorph cantilever structure having at least two materials of different thermal coefficient of expansion. The thermal bimorph is responsive to thermal activation and moves in the direction of the material having the lower thermal coefficient expansion. Upon activation, the thermal bimorph intercepts the path of the optical beam and provides for the desired level of optical attenuation. The invention also provides for a method of optical attenuation and a method for fabricating an optical attenuator in accordance with the described structures.
摘要:
An apparatus and method relating to a least one wheel rotatable about a first axis while movably supporting a reflected light gathering unit extending along a second axis are disclosed.
摘要:
Microelectromechanical (MEM) Optical Cross-connect (OXC) switches having mechanical actuators are discussed. In particular, the MEM OXC switches can include a plurality of reflectors, wherein each of the plurality of the reflectors is movable to at least one of a respective first reflector position along a respective optical beam path from an associated input of the MEM OXC switch to an associated output thereof and a respective second reflector position outside the optical beam path. A mechanical actuator moves to at least one of a first mechanical actuator position and a second mechanical actuator position. A selector selects ones of the plurality of reflectors to be coupled to the mechanical actuator and at least one of the plurality of reflectors to be decoupled from the mechanical actuator, wherein the mechanical actuator is coupled to the selected ones of the plurality of reflectors in the first actuator position and wherein the mechanical actuator moves the selected ones of the plurality of reflectors from the respective first reflector positions to the respective second reflector positions when the mechanical actuator moves from the first mechanical actuator position to the second mechanical actuator position. Related methods are also discussed.
摘要:
A MEMS electrical cross-point switch is provided that includes a microelectronic substrate, a magnetic element attached to the microelectronic substrate that is free to move in a predetermined direction in response to a magnetic field and an electrical element connected to the magnetic element for movement therewith to selectively switch electric current. In one embodiment the magnetic element and the electrical element are connected via a tethering device that acts as a platform for the magnetic and electrical elements. The electrical cross-point switch may also comprise a clamping element that serves to lock the switch in an open or closed position to circumvent the magnetic actuation of the switch. In another embodiment, the invention provides for a MEMS electrical cross-point switching array that includes a microelectronic substrate, a magnetic field source in circuit with said microelectronic substrate, a plurality of first and second electrical lines disposed on the microelectronic substrate in an array formation, and a plurality of the in-plane MEMS electrical cross-point switches as described above disposed at the cross point of a first and second electrical line. In one embodiment the array is configured in a N×N or N×M array having a series of crossing first and second electrical load lines. In another configuration the array has a series of first electrical load lines that extend radially from a central point of reference and a series of second electrical load lines that extend outward, in spoke-like fashion, from the central point of reference.