摘要:
The invention is directed to novel heterofulvalene geminal dithiolate compounds and their selenium and tellurium analogs having the general formula ##STR1## Wherein X is selected from S, Se and Te. R is selected from hydrogen, alkyl, aryl, or together form a ring of carbon atoms, cyano and dithiocarbonate groups and R.sup.1 is selected from alkali, alkaline earth and transition metals, alkyl, aryl, cyclic and heterocyclic groups.A novel method for preparing these compounds is also provided.
摘要:
The invention is directed to novel heterofulvalene geminal dithiolate compounds and their selenium and tellurium analogs having the general formula ##STR1## wherein X is selected from S, Se and Te. R is selected from hydrogen, alkyl, aryl, or together form a ring of carbon atoms, cyano and dithiocarbonate groups and R.sup.1 is selected from alkali, alkaline earth and transition metals, alkyl, aryl, cyclic and heterocyclic groups.A novel method for preparing these compounds is also provided.
摘要:
The invention is directed to novel heterofulvalene geminal dithiolate compounds and their selenium and tellurium analogs having the general formula ##STR1## Wherein X is selected from S, Se and Te. R is selected from hydrogen, alkyl, aryl, or together form a ring of carbon atoms, cyano and dithiocarbonate groups and R.sup.1 is selected from alkali, alkaline earth and transition metals, alkyl, aryl, cyclic and heterocyclic groups.A novel method for preparing these compounds is also provided.
摘要:
The invention is directed to novel heterofulvalene geminal dithiolate compounds and their selenium and tellurium analogs having the general formula ##STR1## Wherein X is selected from S, Se and Te. R is selected from hydrogen, alkyl, aryl, or together form a ring of carbon atoms, cyano and dithiocarbonate groups and R.sup.1 is selected from alkali, alkaline earth and transition metals, alkyl, aryl, cyclic and heterocyclic groups.A novel method for preparing these compounds is also provided.
摘要:
Organic molecules can be coupled via their selenocarbonyl derivatives. Generally, the synthesis can be described by the following reaction equation: ##STR1## where C can be a cyclic or heterocyclic organic compound and R can be alkoxy, phenoxy or phenyl, preferably CH.sub.3 O, C.sub.2 H.sub.5 O, C.sub.6 H.sub.5 O, C.sub.6 H.sub.5 and the like. The reaction is usually carried out in a refluxing solvent, the choice of the solvent being determined by the stability and by the ease of coupling of a particular substrate. Groups that tend to stabilize the selenocarbonyl require higher boiling solvents and longer refluxing times. Aromatic solvents, such as benzene or toluene are well-suited for the coupling reaction. In some cases, refluxing the substrate in the alkoxy-phosphorus base as solvent may be advantageous. This new coupling procedure permits the synthesis of the hitherto unknown compounds: tetraselenofulvalene (TSeF), the selenium analogue of tetrathiofulvalene (TTF), and diselenodithiofulvalene (DSeDTF). Highly conducting charge transfer salts of tetraselenofulvalene and diselenodithiofulvalene with tetracyano-p-quinodimethane have also been prepared. The materials of this invention are useful in the organic electronic devices described in copending application Ser. no. 450,541 to Arieh Aviram et al. and assigned to the same assignee as is the present application.
摘要:
A method of forming a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD is provided. The porous composite material includes a first solid phase having a first characteristic dimension and a second phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
摘要:
A method of forming a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD is provided. The porous composite material includes a first solid phase having a first characteristic dimension and a second phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less
摘要:
The present invention provides a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD. The inventive composite material is also characterized by the substantial absence of the broad distribution of larger sized pores which is prevalent in prior art porous composite materials. The porous composite material includes a first solid phase having a first characteristic dimension and a second solid phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
摘要:
A semiconductor device structure and method for manufacture includes a substrate having a top first layer; a second thin transition layer located on top of the first layer; and, a third layer located on top of the transition layer, wherein the second thin transition layer provides strong adhesion and cohesive strength between the first and third layers of the structure. Additionally, a semiconductor device structure and method for manufacture includes an insulating structure comprising a multitude of dielectric and conductive layers with respective transition bonding layers disposed to enhance interfacial strength among the different layers. Further, an electronic device structure incorporates layers of insulating and conductive materials as intralevel or interlevel dielectrics in a back-end-of-the-line (“BEOL”) wiring structure in which the interfacial strength between different pairs of dielectric films is enhanced by a thin intermediate transition bonding layer.
摘要:
The invention provides a capacitor having increased capacitance comprising one or more main vertical trenches and one or more lateral trenches extending off the main vertical trench. The capacitor has alternating first and second regions, preferably silicon and non-silicon regions (for example, alternating silicon and germanium or alternating silicon and carbon regions). The etch characteristics of the alternating regions are utilized to selectively etch lateral trenches thereby increasing the surface area and capacitance of the capacitor. A method of fabricating the capacitors is also provided.