摘要:
A voltage variable material (“VVM”) including an insulative binder that is formulated to intrinsically adhere to conductive and non-conductive surfaces is provided. The binder and thus the VVM is self-curable and applicable in a spreadable form that dries before use. The binder eliminates the need to place the VVM in a separate device or to provide separate printed circuit board pads on which to electrically connect the VVM. The binder and thus the VVM can be directly applied to many different types of substrates, such as a rigid (FR-4) laminate, a polyimide or a polymer. The VVM can also be directly applied to different types of substrates that are placed inside a device. In one embodiment, the VVM includes doped semiconductive particles having a core, such which can be silicon, and an inert coating, which can be an oxide. The particles are mixed in the binder with conductive particles.
摘要:
A first voltage variable material (“VVM”) includes an insulative binder, first conductive particles with a core and a shell held in the insulating binder and second conductive particles without a shell held in the insulating binder; a second VVM includes an insulating binder, first conductive particles with a core and a shell held in the insulating binder, second conductive particles without a shell held in the insulating binder, and semiconductive particles with a core and a shell held in the insulating binder; a third VVM includes only first conductive particles with a core and a shell held in the insulating binder.
摘要:
A first voltage variable material (“VVM”) includes an insulative binder, first conductive particles with a core and a shell held in the insulating binder and second conductive particles without a shell held in the insulating binder; a second VVM includes an insulating binder, first conductive particles with a core and a shell held in the insulating binder, second conductive particles without a shell held in the insulating binder, and semiconductive particles with a core and a shell held in the insulating binder; a third VVM includes only first conductive particles with a core and a shell held in the insulating binder.
摘要:
A voltage variable material (“VVM”) including an insulative binder that is formulated to intrinsically adhere to conductive and non-conductive surfaces is provided. The binder and thus the VVM is self-curable and applicable in a spreadable form that dries before use. The binder eliminates the need to place the VVM in a separate device or to provide separate printed circuit board pads on which to electrically connect the VVM. The binder and thus the VVM can be directly applied to many different types of substrates, such as a rigid FR-4 laminate, a polyimide, a polymer or a multilayer PCB via a process such as screen or stencil printing. In one embodiment, the VVM includes two types of conductive particles, one with a core and one without a core. The VVM can also have core-shell type semiconductive particles.
摘要:
An electrical protection device is provided. The device can be removably attached to or mounted inside of a power source, such as a vehicle, e.g., automobile, battery and can employ a replaceable fuse element. The device includes an overcurrent protection element, such as a fuse element, and provides any one or more of the following types of electrical protection: (i) overcurrent protection; (ii) accident or catastrophic event power cutout protection; and (iii) load dump protection. The system is configurable to protect certain vehicle electrical components from an overcurrent and allow others to operate independent of the overcurrent protection. Systems and methods employing the protection device are also illustrated and discussed.
摘要:
The present invention provides overvoltage circuit protection. Specifically, the present invention provides a voltage variable material (“VVM”) that includes an insulative binder that is formulated to intrinsically adhere to conductive and nonconductive surfaces. The binder and thus the VVM is self-curable and may be applied to an application in the form of an ink, which dries in a final form for use. The binder eliminates the need to place the VVM in a separate device or for separate printed circuit board pads on which to electrically connect the VVM. The binder and thus the VVM can be directly applied to many different types of substrates, such as a rigid (FR-4) laminate, a polyimide or a polymer. The VVM can also be directly applied to different types of substrates that are placed inside a device.