Abstract:
A resonant coil coupled with an electromagnetic field is disclosed. A Fraunhofer resonant coil includes an upper spiral element and a lower spiral element, an upper conical element connected to the upper spiral element and including one or more layers formed of a plurality of plies, a lower conical element connected to the lower spiral element and including one or more layers formed of a plurality of plies, and a feeding device connected to a gap between the upper conical element and the lower conical element and configured to supply power.
Abstract:
A method for manufacturing a multilayer coil includes preparing a first substrate by forming a first conductor pattern on a first insulating base material layer, preparing a second substrate by forming a second conductor pattern on a second insulating base material layer, and joining a surface of the first substrate on which the first conductor pattern is formed and a surface of the second substrate on which the second conductor pattern is formed together with only a joining layer made of a thermoplastic resin interposed therebetween. Amounts of deformation of the first and second insulating base material layers are less than that of the joining layer at a fusion temperature. The first and second conductor patterns are each a coil pattern having a coil axis that extends in a lamination direction in which the first substrate and the second substrate are laminated together.
Abstract:
An optimizer includes a processor configured to: optimize a change amount of a interlinkage magnetic flux in a coil by using an objective function formula that maximizes a sum of Δφirightxi (i=1 to Nc) and Δφileftyi (i=1 to Nc), when it is assumed that a surface of the magnetic device where the coil is arranged be divided into Nc (Nc is integer) coil regions, in an i-th coil region Ni, an auxiliary variable of a clockwise coil that may exist in the coil region Ni be xi, and an auxiliary variable of a counterclockwise coil that may exist in the coil region Ni be yi, and a change amount of an interlinkage magnetic flux of the clockwise coil in the coil region Ni be Δφiright and a change amount of an interlinkage magnetic flux of the counterclockwise coil in the coil region Ni be Δφileft.
Abstract:
A radio frequency (RF) transmitter, comprising a Tesla transformer and an LC oscillator, said Tesla transformer comprising inner and outer conductors (10, 20), said inner conductor (20) comprising a generally tubular magnetic core (22) carrying a conductive member (22a) on its outer surface and said outer conductor (10) comprising a generally tubular magnetic core (13) carrying a conductive member (12) on its inner surface, said LC oscillator including a secondary winding module (40) comprising a generally tubular body (41) carrying a conductive coil (42) on its outer surface, said inner conductor (20), outer conductor (10) and secondary winding module (40) being arranged in a substantially concentric nested configuration such that said inner conductor (20) is located within said secondary winding module (40) and said secondary winding module (40) is located within said outer conductor (10), wherein a first portion (45) of relatively high permittivity dielectric material is provided between said conductive member (22a) of said inner conductor (20) and said conductive coil (42) and a second portion (33) of relatively high permittivity dielectric material is provided between said conductive coil (42) and said conductive member (12) of said outer conductor (10).
Abstract:
An ultra-wideband assembly is provided. The assembly includes a non-conductive tapered core having a conductive wire wound on an outer surface of the non-conductive tapered core, a low-frequency inductor coupled to the non-conductive tapered core via the distal end of the conductive wire and configured to allow mounting of the non-conductive tapered core at an angle with respect to the circuit board. The low frequency inductor is being disposed on a dielectric board configured to be coupled to the circuit board. The assembly includes an ultra-wideband capacitor coupled to the non-conductive tapered core via the proximate end of the conductive wire, the ultra-wideband capacitor being also coupled to the transmission line on the dielectric board.
Abstract:
A conical inductor provided in the present invention includes: a housing, a conical coil located inside the housing, a first pin and a second pin respectively connected to two ends of the conical coil, where one end of the first pin is connected to one end of the conical coil, the other end of the first pin is connected to a hole in a first side wall of the housing in a fastened manner, one end of the second pin is connected to the other end of the conical inductor, and the other end of the second pin is connected to a hole in a second side wall of the housing in a fastened manner; and each of the first pin and the second pin includes one segment of waveform segment fluctuating in a direction perpendicular to a top wall of the housing.
Abstract:
A microelectrical mechanical system (MEMS) actuator having electrically conductive coils that create first magnetic fields that are opposed by a second magnetic field is disclosed. The actuator includes two coils having dual, interspersed Archimedean spirals. Within an actuator, one coil is arranged with spirals that proceed clockwise, while the other coil is provided with spirals that proceed counterclockwise. An electrically conductive bridge mechanically couples the two coils of each actuator to a mirror. Opposing magnetic fields are created to provide a force that urges the coils to expand so that the outermost portions of the coil extend upward, away from the substrate, and lift the bridge and mirror. Control current may then be modulated to increase and decrease the coil's magnetic field strength thereby increasing and decreasing the coil's extension to raise and lower relative to the substrate.
Abstract:
An inductor circuit board that is made compatible with broadband by reducing parasitic capacitance of an inductor. The inductor circuit board is comprised of a flexible substrate made of a material, such as polyimide or liquid polymer, a transmission line formed on the flexible substrate, and an inductor. The inductor has a three-dimensional conical structure in which component inductors having different inductances are continuously connected to each other, with one end thereof connected to a portion of the transmission line between an input end and an output end thereof, and is formed according to a transmission line pattern by wiring on a plurality of surface layers of the flexible substrate and connecting portions wired on the surface layers by vias that connect between the layer surfaces of the substrate, such that the inductor is expanded in a fan-like manner as it is farther from the one end connected to the transmission line. A portion of the indictor closer to the transmission line has a smaller inductance, and a portion of the same farther from the transmission line has a larger inductance.
Abstract:
An integrated contact is disposed on the end of a conical coil form. Fine magnet wire is soldered to the integrated contact and wound around the coil form to fabricate a high-frequency inductor for use in high-frequency chokes and other high-frequency devices. In one embodiment, the integrated contact is plated on the tip of a polyiron coil form and less than one turn of wire is wrapped around the plated portion of the polyiron coil form. The integrated contact has reduced contact area, reducing capacitive coupling and improving high-frequency electrical performance.
Abstract:
A thin electrically conductive wire wound into a conical coil 1 with leads from the small and large ends of the coil. The coil is filled with powdered iron 11, and is mounted in a thin-walled, completely non-conductive, leadless carrier 21 for ease of assembly onto a circuit board 15. The small end 4 of the coil is positioned precisely on a micro-strip 17 on the circuit board to provide maximum bandwidth. The coil is held by the carrier at an angle such that the large end of the coil is displaced from the circuit board by a distance D of at least half the radius of the large end of the coil. Attachment of the leads from the small and large ends of the coil to respective contacts on the circuit board is done with minimum lead length, minimum conductive material, and without the use of metallic pads on the carrier, to yield the highest possible frequency response. The coil geometry in combination with the unique characteristics of the carrier virtually eliminates electrical reflections and resonances to yield a broadband choke with exceptional frequency range from 300 kHz to 40 GHz.