摘要:
A silicon carbide semiconductor device provided as a semiconductor chip includes a substrate, a drift layer on the substrate, an insulation film on the drift layer, a semiconductor element formed in a cell region of the drift layer, a surface electrode formed on the drift layer and electrically coupled to the semiconductor element through an opening of the insulation film, and a passivation film formed above the drift layer around the periphery of the cell region to cover an outer edge of the surface electrode. The passivation film has an opening through which the surface electrode is exposed outside. A surface of the passivation film is made uneven to increase a length from an inner edge of the opening of the passivation film to a chip edge measured along the surface of the passivation film.
摘要:
A semiconductor device having a JBS diode includes: a SiC substrate; a drift layer on the substrate; an insulation film on the drift layer having an opening in a cell region; a Schottky barrier diode having a Schottky electrode contacting the drift layer through the opening and an ohmic electrode on the substrate; a terminal structure having a RESURF layer in the drift layer surrounding the cell region; and multiple second conductive type layers in the drift layer on an inner side of the RESURF layer contacting the Schottky electrode. The second conductive type layers are separated from each other. The second conductive type layers and the drift layer provide a PN diode. Each second conductive type layer has a depth larger than the RESURF layer.
摘要:
A manufacturing method of a semiconductor device comprises a process of doping conductive impurities in a silicon carbide substrate, a process of forming a cap layer on a surface of the silicon carbide substrate, a process of activating the conductive impurities doped in the silicon carbide substrate, a process of oxidizing the cap layer after a first annealing process, and a process of removing the oxidized cap layer. It is preferred that the cap layer is formed from material that includes metal carbide. Since the oxidation onset temperature of metal carbide is comparatively low, the oxidization of the cap layer becomes easy if metal carbide is included in the cap layer. Specifically, it is preferred that the cap layer is formed from metal carbide that has an oxidation onset temperature of 1000 degrees Celsius or below, such as tantalum carbide.
摘要:
A silicon carbide semiconductor device includes a drift layer having first conductive type on a substrate, a cell region in the drift layer, a schottky electrode on the drift layer and multiple second conductive type layers in the cell region. The second conductive type layers are separated from each other and contact the schottky electrode. A size and an impurity concentration of the second conductive type layers and a size and an impurity concentration of a portion of the drift layer sandwiched between the second conductive type layers are determined so that a charge quantity of the second conductive type layers is equal to a charge quantity of the portion. Hereby, the pressure-proof JBS and low resistivity second conductive type layers arranged on a surface of the drift layer to provide a PN diode, can be obtained.
摘要:
An SiC semiconductor device is provided, which comprises: a substrate made of silicon carbide and having a principal surface; a drift layer made of silicon carbide and disposed on the principal surface; an insulating layer disposed on the drift layer and including an opening; a Schottky electrode contacting with the drift layer through the opening; a termination structure disposed around an outer periphery of the opening; and second conductivity type layers disposed in a surface part of the drift layer, contacting the Schottky electrode, surrounded by the termination structure, and separated from one another. The second conductivity type layers include a center member and ring members. Each ring member surrounds the center member and is arranged substantially in a point symmetric manner with respect to the center member.
摘要:
A silicon carbide semiconductor device with a Schottky barrier diode includes a first conductivity type silicon carbide substrate, a first conductivity type silicon carbide drift layer on a first surface of the substrate, a Schottky electrode forming a Schottky contact with the drift layer, and an ohmic electrode on a second surface of the substrate. The Schottky electrode includes an oxide layer in direct contact with the drift layer. The oxide layer is made of an oxide of molybdenum, titanium, nickel, or an alloy of at least two of these elements.
摘要:
A semiconductor device includes: a semiconductor element having a first surface and a second surface; a first electrode disposed on the first surface of the element; a second electrode disposed on the second surface of the element; and an insulation film covers a part of the first electrode, the first surface of the element and a part of a sidewall of the element. The above semiconductor device has small dimensions and a high breakdown voltage.
摘要:
A silicon carbide semiconductor device includes a drift layer having first conductive type on a substrate, a cell region in the drift layer, a schottky electrode on the drift layer and multiple second conductive type layers in the cell region. The second conductive type layers are separated from each other and contact the schottky electrode. A size and an impurity concentration of the second conductive type layers and a size and an impurity concentration of a portion of the drift layer sandwiched between the second conductive type layers are determined so that a charge quantity of the second conductive type layers is equal to a charge quantity of the portion. Hereby, the pressure-proof JBS and low resistivity second conductive type layers arranged on a surface of the drift layer to provide a PN diode, can be obtained.
摘要:
A silicon carbide semiconductor device includes a substrate; a drift layer having a first conductivity type; an insulating layer; a Schottky electrode; an ohmic electrode; a resurf layer; and second conductivity type layers. The drift layer and the second conductivity type layers provide multiple PN diodes. Each second conductivity type layer has a radial width with respect to a center of a contact region between the Schottky electrode and the drift layer. A radial width of one of the second conductivity type layers is smaller than that of another one of the second conductivity type layers, which is disposed closer to the center of the contact region than the one of the second conductivity type layers.
摘要:
A SiC semiconductor device includes: a SiC substrate; a SiC drift layer on the substrate having an impurity concentration lower than the substrate; a semiconductor element in a cell region of the drift layer; an outer periphery structure including a RESURF layer in a surface portion of the drift layer and surrounding the cell region; and an electric field relaxation layer in another surface portion of the drift layer so that the electric field relaxation layer is separated from the RESURF layer. The electric field relaxation layer is disposed on an inside of the RESURF layer so that the electric field relaxation layer is disposed in the cell region. The electric field relaxation layer has a ring shape.