摘要:
Inspection guided overlay metrology may include performing a pattern search in order to identify a predetermined pattern on a semiconductor wafer, generating a care area for all instances of the predetermined pattern on the semiconductor wafer, identifying defects within generated care areas by performing an inspection scan of each of the generated care areas, wherein the inspection scan includes a low-threshold or a high sensitivity inspection scan, identifying overlay sites of the predetermined pattern of the semiconductor wafer having a measured overlay error larger than a selected overlay specification utilizing a defect inspection technique, comparing location data of the identified defects of a generated care area to location data of the identified overlay sites within the generated care area in order to identify one or more locations wherein the defects are proximate to the identified overlay sites, and generating a metrology sampling plan based on the identified locations.
摘要:
Inspection guided overlay metrology may include performing a pattern search in order to identify a predetermined pattern on a semiconductor wafer, generating a care area for all instances of the predetermined pattern on the semiconductor wafer, identifying defects within generated care areas by performing an inspection scan of each of the generated care areas, wherein the inspection scan includes a low-threshold or a high sensitivity inspection scan, identifying overlay sites of the predetermined pattern of the semiconductor wafer having a measured overlay error larger than a selected overlay specification utilizing a defect inspection technique, comparing location data of the identified defects of a generated care area to location data of the identified overlay sites within the generated care area in order to identify one or more locations wherein the defects are proximate to the identified overlay sites, and generating a metrology sampling plan based on the identified locations.
摘要:
Methods and systems for determining design coordinates for defects detected on a wafer are provided. One method includes aligning a design for a wafer to defect review tool images for defects detected in multiple swaths on the wafer by an inspection tool, determining a position of each of the defects in design coordinates based on results of the aligning, separately determining a defect position offset for each of the multiple swaths based on the swath in which each of the defects was detected (swath correction factor), the design coordinates for each of the defects, and a position for each of the defects determined by the inspection tool, and determining design coordinates for the other defects detected in the multiple swaths by the inspection tool by applying the appropriate swath correction factor to those defects.
摘要:
The present invention includes searching imagery data in order to identify one or more patterned regions on a semiconductor wafer, generating one or more virtual Fourier filter (VFF) working areas, acquiring an initial set of imagery data from the VFF working areas, defining VFF training blocks within the identified patterned regions of the VFF working areas utilizing the initial set of imagery data, wherein each VFF training block is defined to encompass a portion of the identified patterned region displaying a selected repeating pattern, calculating an initial spectrum for each VFF training block utilizing the initial set of imagery data from the VFF training blocks, and generating a VFF for each training block by identifying frequencies of the initial spectrum having maxima in the frequency domain, wherein the VFF is configured to null the magnitude of the initial spectrum at the frequencies identified to display spectral maxima.
摘要:
A system and method of matching multiple scanners using design and defect data are described. A golden wafer is processed using a golden tool. A second wafer is processed using a second tool. Both tools provide focus/exposure modulation. Wafer-level spatial signatures of critical structures for both wafers can be compared to evaluate the behavior of the scanners. Critical structures can be identified by binning defects on the golden wafer having similar patterns. In one embodiment, the signatures must match within a certain percentage or the second tool is characterized as a “no match”. Reticles can be compared in a similar manner, wherein the golden and second wafers are processed using a golden reticle and a second reticle, respectively.
摘要:
Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.
摘要:
Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.
摘要:
Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.
摘要:
Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.
摘要:
A system and method of matching multiple scanners using design and defect data are described. A golden wafer is processed using a golden tool. A second wafer is processed using a second tool. Both tools provide focus/exposure modulation. Wafer-level spatial signatures of critical structures for both wafers can be compared to evaluate the behavior of the scanners. Critical structures can be identified by binning defects on the golden wafer having similar patterns. In one embodiment, the signatures must match within a certain percentage or the second tool is characterized as a “no match”. Reticles can be compared in a similar manner, wherein the golden and second wafers are processed using a golden reticle and a second reticle, respectively.