摘要:
Mechanisms are provided for use with a microprocessor chip, for storing selected reliability information in an on-chip non-volatile storage device. An on-chip reliability controller coupled to one or more on-chip resources of the microprocessor chip, collects raw reliability information from the one or more on-chip resources of the microprocessor chip. The on-chip reliability controller analyzes the raw reliability information to identify selected reliability information for the one or more resources of the microprocessor chip. The on-chip reliability controller stores the selected reliability information in the on-chip non-volatile storage device. The on-chip non-volatile storage device stores the selected reliability information even in the event of an overall failure of the microprocessor chip in which the microprocessor chip loses power. The on-chip non-volatile storage device has an interface through which the selected reliability information is accessible by an off-chip device even in the event of an overall failure of the microprocessor chip.
摘要:
Mechanisms for controlling an operation of one or more cores on an integrated circuit chip are provided. The mechanisms retrieve, from an on-chip non-volatile memory of the integrated circuit chip, baseline chip characteristics data representing operational characteristics of the one or more cores prior to the integrated circuit chip being operational in the data processing system. Current operational characteristics data of the one or more cores are compared with the baseline chip characteristics data. Deviations of the current operational characteristics data from the baseline chip characteristics data are determined and used to determine modifications to an operation of the one or more cores. Control signals are sent to one or more on-chip management units based on the determined modifications to cause the operation of the one or more cores to be modified.
摘要:
Mechanisms are provided for use with a microprocessor chip, for storing selected reliability information in an on-chip non-volatile storage device. An on-chip reliability controller coupled to one or more on-chip resources of the microprocessor chip, collects raw reliability information from the one or more on-chip resources of the microprocessor chip. The on-chip reliability controller analyzes the raw reliability information to identify selected reliability information for the one or more resources of the microprocessor chip. The on-chip reliability controller stores the selected reliability information in the on-chip non-volatile storage device. The on-chip non-volatile storage device stores the selected reliability information even in the event of an overall failure of the microprocessor chip in which the microprocessor chip loses power. The on-chip non-volatile storage device has an interface through which the selected reliability information is accessible by an off-chip device even in the event of an overall failure of the microprocessor chip.
摘要:
Mechanisms for controlling an operation of one or more cores on an integrated circuit chip are provided. The mechanisms retrieve, from an on-chip non-volatile memory of the integrated circuit chip, baseline chip characteristics data representing operational characteristics of the one or more cores prior to the integrated circuit chip being operational in the data processing system. Current operational characteristics data of the one or more cores are compared with the baseline chip characteristics data. Deviations of the current operational characteristics data from the baseline chip characteristics data are determined and used to determine modifications to an operation of the one or more cores. Control signals are sent to one or more on-chip management units based on the determined modifications to cause the operation of the one or more cores to be modified.
摘要:
Block placement within each device-containing layer is optimized under the constraint of a simultaneous optimization of interlayer connectivity between the device-containing layer and immediately adjacent device-containing layers. For each functional block within the device-containing layer, lateral heat flow is calculated to laterally adjacent functional blocks. If the lateral heat flow is less than a threshold value for a pair of adjacent functional blocks, placement of the functional blocks and/or interlayer interconnect structure array therebetween or modification of the interlayer interconnect structure array is performed. This routine is repeated for all adjacent pairs of functional blocks in each of the device-containing layers. Subsequently, block placement within each device-containing layer may be optimized under the constraint of a simultaneous optimization of interlayer connectivity across all device-containing layers. This method provides a design having sufficient lateral heat flow in each of the device-containing layers in a semiconductor chip.
摘要:
Enhanced modularity in heterogeneous three-dimensional computer processing chip stacks includes a method of manufacture. The method includes preparing a host layer and integrating the host layer with at least one other layer in the stack. The host layer is prepared by forming cavities on the host layer for receiving chips pre-configured with heterogeneous properties relative to each other, disposing the chips in corresponding cavities on the host layer, and joining the chips to respective surfaces of the cavities thereby forming an element having a smooth surface with respect to the host layer and the chips.
摘要:
Enhanced modularity in heterogeneous three-dimensional computer processing chip stacks includes a method of manufacture. The method includes preparing a host layer and integrating the host layer with at least one other layer in the stack. The host layer is prepared by forming cavities on the host layer for receiving chips pre-configured with heterogeneous properties relative to each other, disposing the chips in corresponding cavities on the host layer, and joining the chips to respective surfaces of the cavities thereby forming an element having a smooth surface with respect to the host layer and the chips.
摘要:
A three-dimensional computer processing chip stack that includes a host layer disposed on at least one other layer in the stack. The host layer includes cavities formed thereon for receiving chips pre-configured with heterogeneous properties relative to each other. The cavities are formed to accommodate the heterogeneous properties of the chips. The chips are joined to respective surfaces of the cavities, thereby forming an element having a smooth surface with respect to the host layer and the chips.
摘要:
A computer program product for generating and implementing a three-dimensional (3D) computer processing chip stack plan. The computer readable program code includes computer readable program code configured for receiving system requirements from a plurality of clients, identifying common processing structures and technologies from the system requirements, and assigning the common processing structures and technologies to at least one layer in the 3D computer processing chip stack plan. The computer readable program code is also configured for identifying uncommon processing structures and technologies from the system requirements and assigning the uncommon processing structures and technologies to a host layer in the 3D computer processing chip stack plan. The computer readable program code is further configured for determining placement and wiring of the uncommon structures on the host layer, storing placement information in the plan, and transmitting the plan to manufacturing equipment. The manufacturing equipment forms the 3D computer processing chip stack.
摘要:
Methods and systems for managing memory and stress to memory systems. A method for managing memory includes receiving from a software application memory retention requirements for application data. The memory retention requirements include storage duration length and/or criticality of data retention. The method also includes storing the application data in one of a plurality of memory regions in non-volatile memory based on the memory retention requirements and memory retention characteristics of the memory regions. Each memory region may have different memory retention characteristics.