摘要:
A method is described for laser scribing or dicing portions of a workpiece using multi-source laser systems. In one embodiment, a first laser melts portions of the workpiece prior to a second laser ablating the portions of the workpiece.
摘要:
A method is described for laser scribing or dicing portions of a workpiece using multi-source laser systems. In one embodiment, a first laser uses multiphoton absorption to lower the ablation threshold of portions of the workpiece prior to a second laser ablating the portions of the workpiece. In an alternative embodiment, a first laser uses high energy single-photon absorption to lower the ablation threshold of portions of the workpiece prior to a second laser ablating the portions of the workpiece.
摘要:
Formulations and processes for forming wafer coat layers are disclosed. In one embodiment, an organic surface protectant is incorporated into a wafer coat formulation deposited onto a semiconductor wafer prior to the laser scribe operation. Upon removal of the wafer coat layer, the organic surface protectant remains on the bumps and thereby prevents oxidation of the bumps between die prep and chip and attach. In an alternative embodiment, an ultraviolet light absorber is added to the wafer coat formulation to enhance the wafer coat layer's energy absorption and thereby improve the laser's ability to ablate the wafer coat layer. In an alternative embodiment, a conformal wafer coat layer is deposited on the wafer and die bumps, thereby reducing wafer coat layer thickness variations that can impact the laser scribing ability.
摘要:
Formulations and processes for forming wafer coat layers are disclosed. In one embodiment, an organic surface protectant is incorporated into a wafer coat formulation deposited onto a semiconductor wafer prior to the laser scribe operation. Upon removal of the wafer coat layer, the organic surface protectant remains on the bumps and thereby prevents oxidation of the bumps between die prep and chip and attach. In an alternative embodiment, an ultraviolet light absorber is added to the wafer coat formulation to enhance the wafer coat layer's energy absorption and thereby improve the laser's ability to ablate the wafer coat layer. In an alternative embodiment, a conformal wafer coat layer is deposited on the wafer and die bumps, thereby reducing wafer coat layer thickness variations that can impact the laser scribing ability.
摘要:
Formulations and processes for forming wafer coat layers are disclosed. In one embodiment, an organic surface protectant is incorporated into a wafer coat formulation deposited onto a semiconductor wafer prior to the laser scribe operation. Upon removal of the wafer coat layer, the organic surface protectant remains on the bumps and thereby prevents oxidation of the bumps between die prep and chip and attach. In an alternative embodiment, an ultraviolet light absorber is added to the wafer coat formulation to enhance the wafer coat layer's energy absorption and thereby improve the laser's ability to ablate the wafer coat layer. In an alternative embodiment, a conformal wafer coat layer is deposited on the wafer and die bumps, thereby reducing wafer coat layer thickness variations that can impact the laser scribing ability.
摘要:
Formulations and processes for forming wafer coat layers are disclosed. In one embodiment, an organic surface protectant is incorporated into a wafer coat formulation deposited onto a semiconductor wafer prior to the laser scribe operation. Upon removal of the wafer coat layer, the organic surface protectant remains on the bumps and thereby prevents oxidation of the bumps between die prep and chip and attach. In an alternative embodiment, an ultraviolet light absorber is added to the wafer coat formulation to enhance the wafer coat layer's energy absorption and thereby improve the laser's ability to ablate the wafer coat layer. In an alternative embodiment, a conformal wafer coat layer is deposited on the wafer and die bumps, thereby reducing wafer coat layer thickness variations that can impact the laser scribing ability.
摘要:
Vacuum processing, such as a backside metallization (BSM) deposition, is performed on a taped wafer after a gas escape path is formed between a base film of the tape and the wafer frontside surface following backgrind. Venting provided by the gas escape path reduces formation of bubbles under the tape. The gas escape path may be provided, for example, by a selective pre-curing of tape adhesive, to breach an edge seal and place the wafer frontside surface internal to the edge seal in fluid communication with an environment external to the edge seal. With the thinned wafer supported by the pre-cured tape, BSM is then deposited while the wafer and tape are cooled, for example, via a cooled electrostatic chuck.
摘要:
Vacuum processing, such as a backside metallization (BSM) deposition, is performed on a taped wafer after a gas escape path is formed between a base film of the tape and the wafer frontside surface following backgrind. Venting provided by the gas escape path reduces formation of bubbles under the tape. The gas escape path may be provided, for example, by a selective pre-curing of tape adhesive, to breach an edge seal and place the wafer frontside surface internal to the edge seal in fluid communication with an environment external to the edge seal. With the thinned wafer supported by the pre-cured tape, BSM is then deposited while the wafer and tape are cooled, for example, via a cooled electrostatic chuck.
摘要:
Die warpage is controlled for the assembly of thin dies. In one example, a device having a substrate on a back side and components in front side layers is formed. A backside layer is formed over the substrate, the layer resisting warpage of the device when the device is heated. The device is attached to a substrate by heating.
摘要:
A semiconducting structure includes a thinned silicon substrate (110), a silicide layer (120) over the thinned silicon substrate, a metal layer (130) over the silicide layer, a solder interface layer (140) over the metal layer, and a cap layer (150) over the solder interface layer. The thinned silicon substrate is no thicker than approximately 500 micrometers. The silicide layer is formed using a rapid thermal processing procedure that locally heats the interface between the metal layer and the silicon substrate but causes no more than negligible thermal impact to other areas of the silicon wafer.