Abstract:
The present invention provides improved methods and devices for electroplating copper on a wafer. Some implementations of the present invention involve the pre-treatment of the wafer with a solution containing accelerator molecules. Preferably, the bath into which the wafer is subsequently placed for electroplating has a reduced concentration of accelerator molecules. The pre-treatment causes a reduction in roughness of the electroplated copper surface, particularly during the initial phases of copper growth.
Abstract:
The present invention provides improved methods and devices for electroplating copper on a wafer. Some implementations of the present invention involve the pre-treatment of the wafer with a solution containing accelerator molecules. Preferably, the bath into which the wafer is subsequently placed for electroplating has a reduced concentration of accelerator molecules. The pre-treatment causes a reduction in roughness of the electroplated copper surface, particularly during the initial phases of copper growth.
Abstract:
A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry. The etching is timed to etch through a partial thickness of the low dielectric constant layer and the first etch chemistry is optimized to a selected low dielectric constant material. The method further includes forming a via hole in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In a specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
Abstract:
Methods and apparatus are provided for planar metal plating on a workpiece having a surface with recessed regions and exposed surface regions; comprising the steps of: causing a plating accelerator to become attached to said surface including the recessed and exposed surface regions; selectively removing the plating accelerator from the exposed surface regions without performing substantial metal plating on the surface; and after removal of plating accelerator is at least partially complete, plating metal onto the surface, whereby the plating accelerator remaining attached to the surface increases the rate of metal plating in the recessed regions relative to the rate of metal plating in the exposed surface regions.
Abstract:
A fuel management server creates a primary transaction record for a primary fueling agent assigned to a fueling transaction and a secondary transaction record for each secondary fueling agent assigned to the fueling transaction. Each fueling agent interacts with a fueling agent client device to collect fueling transaction data to be stored in the transaction records. Certain transaction data collected by the secondary fueling agent is shared with the primary fueling agent. The primary transaction record stores final fuel load data indicating the amount of fuel dispensed from a primary fueling vehicle and an aggregate amount of fuel dispensed during the fueling transaction. The secondary transaction record stores final fuel load data indicating the amount of fuel dispensed from a secondary fueling vehicle during the fueling transaction. Selected portions of the primary transaction record and the secondary transaction record may be accessed for purposes of reporting and presentation.
Abstract:
A fueling agent operates a fueling agent client device for collecting and generating transaction data relating to a fueling transaction. The fueling agent client device transmits the transaction data to a fuel management server, for example, via a wireless communications link. The fuel management server stores the transaction data in a transaction record. The transaction data includes final fuel load data indicating an amount of fuel dispensed during the fueling transaction. Selected transaction data is retrieved from the transaction record and is delivered to a data communications system for transmission to a receiver. The receiver may be in the cockpit of an aircraft. An aircraft data communication system may be a digital data link system for transmitting data to and from the aircraft via VHF radio, such as ACARS. The fuel management server may communicate with an aircraft data communication system directly, or indirectly via an airline computer system.